亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For the distributions of finitely many binary random variables, we study the interaction of restrictions of the supports with conditional independence constraints. We prove a generalization of the Hammersley-Clifford theorem for distributions whose support is a natural distributive lattice: that is, any distribution which has natural lattice support and satisfies the pairwise Markov statements of a graph must factor according to the graph. We also show a connection to the Hibi ideals of lattices.

相關內容

《圖形模型》是國際公認的高評價的頂級期刊,專注于圖形模型的創建、幾何處理、動畫和可視化,以及它們在工程、科學、文化和娛樂方面的應用。GMOD為其讀者提供了經過徹底審查和精心挑選的論文,這些論文傳播令人興奮的創新,傳授嚴謹的理論基礎,提出健壯和有效的解決方案,或描述各種主題中的雄心勃勃的系統或應用程序。 官網地址:

Combining microstructural mechanical models with experimental data enhances our understanding of the mechanics of soft tissue, such as tendons. In previous work, a Bayesian framework was used to infer constitutive parameters from uniaxial stress-strain experiments on horse tendons, specifically the superficial digital flexor tendon (SDFT) and common digital extensor tendon (CDET), on a per-experiment basis. Here, we extend this analysis to investigate the natural variation of these parameters across a population of horses. Using a Bayesian mixed effects model, we infer population distributions of these parameters. Given that the chosen hyperelastic model does not account for tendon damage, careful data selection is necessary. Avoiding ad hoc methods, we introduce a hierarchical Bayesian data selection method. This two-stage approach selects data per experiment, and integrates data weightings into the Bayesian mixed effects model. Our results indicate that the CDET is stiffer than the SDFT, likely due to a higher collagen volume fraction. The modes of the parameter distributions yield estimates of the product of the collagen volume fraction and Young's modulus as 811.5 MPa for the SDFT and 1430.2 MPa for the CDET. This suggests that positional tendons have stiffer collagen fibrils and/or higher collagen volume density than energy-storing tendons.

In this note, we derive the closed form formulae for moments of Student's t-distribution in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of Student's t-distribution can be written in terms of the familiar Gamma function, Kummer's confluent hypergeometric function, and the hypergeometric function.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

The use of model order reduction techniques in combination with ensemble-based methods for estimating the state of systems described by nonlinear partial differential equations has been of great interest in recent years in the data assimilation community. Methods such as the multi-fidelity ensemble Kalman filter (MF-EnKF) and the multi-level ensemble Kalman filter (ML-EnKF) are recognized as state-of-the-art techniques. However, in many cases, the construction of low-fidelity models in an offline stage, before solving the data assimilation problem, prevents them from being both accurate and computationally efficient. In our work, we investigate the use of adaptive reduced basis techniques in which the approximation space is modified online based on the information that is extracted from a limited number of full order solutions and that is carried by the past models. This allows to simultaneously ensure good accuracy and low cost for the employed models and thus improve the performance of the multi-fidelity and multi-level methods.

Climate models struggle to accurately simulate precipitation, particularly extremes and the diurnal cycle. Here, we present a hybrid model that is trained directly on satellite-based precipitation observations. Our model runs at 2.8$^\circ$ resolution and is built on the differentiable NeuralGCM framework. The model demonstrates significant improvements over existing general circulation models, the ERA5 reanalysis, and a global cloud-resolving model in simulating precipitation. Our approach yields reduced biases, a more realistic precipitation distribution, improved representation of extremes, and a more accurate diurnal cycle. Furthermore, it outperforms the mid-range precipitation forecast of the ECMWF ensemble. This advance paves the way for more reliable simulations of current climate and demonstrates how training on observations can be used to directly improve GCMs.

Motivated by the need for the rigorous analysis of the numerical stability of variational least-squares kernel-based methods for solving second-order elliptic partial differential equations, we provide previously lacking stability inequalities. This fills a significant theoretical gap in the previous work [Comput. Math. Appl. 103 (2021) 1-11], which provided error estimates based on a conjecture on the stability. With the stability estimate now rigorously proven, we complete the theoretical foundations and compare the convergence behavior to the proven rates. Furthermore, we establish another stability inequality involving weighted-discrete norms, and provide a theoretical proof demonstrating that the exact quadrature weights are not necessary for the weighted least-squares kernel-based collocation method to converge. Our novel theoretical insights are validated by numerical examples, which showcase the relative efficiency and accuracy of these methods on data sets with large mesh ratios. The results confirm our theoretical predictions regarding the performance of variational least-squares kernel-based method, least-squares kernel-based collocation method, and our new weighted least-squares kernel-based collocation method. Most importantly, our results demonstrate that all methods converge at the same rate, validating the convergence theory of weighted least-squares in our proven theories.

A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.

Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, Multi-Shield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. Multi-Shield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that Multi-Shield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.

In reinsurance, Poisson and Negative binomial distributions are employed for modeling frequency. However, the incomplete data regarding reported incurred claims above a priority level presents challenges in estimation. This paper focuses on frequency estimation using Schnieper's framework for claim numbering. We demonstrate that Schnieper's model is consistent with a Poisson distribution for the total number of claims above a priority at each year of development, providing a robust basis for parameter estimation. Additionally, we explain how to build an alternative assumption based on a Negative binomial distribution, which yields similar results. The study includes a bootstrap procedure to manage uncertainty in parameter estimation and a case study comparing assumptions and evaluating the impact of the bootstrap approach.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司