亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given a multiset of $n$ items from $\mathcal{D}$, the \emph{profile reconstruction} problem is to estimate, for $t = 0, 1, \dots, n$, the fraction $\vec{f}[t]$ of items in $\mathcal{D}$ that appear exactly $t$ times. We consider differentially private profile estimation in a distributed, space-constrained setting where we wish to maintain an updatable, private sketch of the multiset that allows us to compute an approximation of $\vec{f} = (\vec{f}[0], \dots, \vec{f}[n])$. Using a histogram privatized using discrete Laplace noise, we show how to ``reverse'' the noise, using an approach of Dwork et al.~(ITCS '10). We show how to speed up their LP-based technique from polynomial time to $O(d + n \log n)$, where $d = |\mathcal{D}|$, and analyze the achievable error in the $\ell_1$, $\ell_2$ and $\ell_\infty$ norms. In all cases the dependency of the error on $d$ is $O( 1 / \sqrt{d})$ -- we give an information-theoretic lower bound showing that this dependence on $d$ is asymptotically optimal among all private, updatable sketches for the profile reconstruction problem with a high-probability error guarantee.

相關內容

在數學中,多重集是對集的概念的修改,與集不同,集對每個元素允許多個實例。 為每個元素提供的實例的正整數個數稱為該元素在多重集中的多重性。 結果存在無限多個多重集,它們僅包含元素a和b,但因元素的多樣性而變化:(1)集{a,b}僅包含元素a和b,當將{a,b}視為多集時,每個元素的多重性為1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。

The inference of a large symmetric signal-matrix $\mathbf{S} \in \mathbb{R}^{N\times N}$ corrupted by additive Gaussian noise, is considered for two regimes of growth of the rank $M$ as a function of $N$. For sub-linear ranks $M=\Theta(N^\alpha)$ with $\alpha\in(0,1)$ the mutual information and minimum mean-square error (MMSE) are derived for two classes of signal-matrices: (a) $\mathbf{S}=\mathbf{X}\mathbf{X}^\intercal$ with entries of $\mathbf{X}\in\mathbb{R}^{N\times M}$ independent identically distributed; (b) $\mathbf{S}$ sampled from a rotationally invariant distribution. Surprisingly, the formulas match the rank-one case. Two efficient algorithms are explored and conjectured to saturate the MMSE when no statistical-to-computational gap is present: (1) Decimation Approximate Message Passing; (2) a spectral algorithm based on a Rotation Invariant Estimator. For linear ranks $M=\Theta(N)$ the mutual information is rigorously derived for signal-matrices from a rotationally invariant distribution. Close connections with scalar inference in free probability are uncovered, which allow to deduce a simple formula for the MMSE as an integral involving the limiting spectral measure of the data matrix only. An interesting issue is whether the known information theoretic phase transitions for rank-one, and hence also sub-linear-rank, still persist in linear-rank. Our analysis suggests that only a smoothed-out trace of the transitions persists. Furthermore, the change of behavior between low and truly high-rank regimes only happens at the linear scale $\alpha=1$.

We say a finite word $x$ is a palindromic periodicity if there exist two palindromes $p$ and $s$ such that $|x| \geq |ps|$ and $x$ is a prefix of the word $(ps)^\omega = pspsps\cdots$. In this paper we examine the palindromic periodicities occurring in some classical infinite words, such as Sturmian words, episturmian words, the Thue-Morse word, the period-doubling word, the Rudin-Shapiro word, the paperfolding word, and the Tribonacci word, and prove a number of results about them.

Given a weighted graph $G$, a $(\beta,\varepsilon)$-hopset $H$ is an edge set such that for any $s,t \in V(G)$, where $s$ can reach $t$ in $G$, there is a path from $s$ to $t$ in $G \cup H$ which uses at most $\beta$ hops whose length is in the range $[dist_G(s,t), (1+\varepsilon)dist_G(s,t)]$. We break away from the traditional question that asks for a hopset that achieves small $|H|$ and instead study its sensitivity, a new quality measure which, informally, is the maximum number of times a vertex (or edge) is bypassed by an edge in $H$. The highlights of our results are: (i) $(\widetilde{O}(\sqrt{n}),0)$-hopsets on undirected graphs with $O(\log n)$ sensitivity, complemented with a lower bound showing that $\widetilde{O}(\sqrt{n})$ is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. (ii) $(n^{o(1)},\varepsilon)$-hopsets on undirected graphs with $n^{o(1)}$ sensitivity for any $\varepsilon > 0$ that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between $\beta, \varepsilon$, and the sensitivity. (iii) $\widetilde{O}(\sqrt{n})$-shortcut sets on directed graphs with $O(\log n)$ sensitivity, complemented with a lower bound showing that $\beta = \widetilde{\Omega}(n^{1/3})$ for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem. Our result for $O(\log n)$ sensitivity $(\widetilde{O}(\sqrt{n}),0)$-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from $\widetilde{O}(n^{1/3})$ to $\widetilde{O}(n^{1/4})$ in the pure-DP setting, which is tight up to polylogarithmic factors.

We study the $d$-dimensional knapsack problem. We are given a set of items, each with a $d$-dimensional cost vector and a profit, along with a $d$-dimensional budget vector. The goal is to select a set of items that do not exceed the budget in all dimensions and maximize the total profit. A PTAS with running time $n^{\Theta(d/\varepsilon)}$ has long been known for this problem, where $\varepsilon$ is the error parameter and $n$ is the encoding size. Despite decades of active research, the best running time of a PTAS has remained $O(n^{\lceil d/\varepsilon \rceil - d})$. Unfortunately, existing lower bounds only cover the special case with two dimensions $d = 2$, and do not answer whether there is a $n^{o(d/\varepsilon)}$-time PTAS for larger values of $d$. The status of exact algorithms is similar: there is a simple $O(n \cdot W^d)$-time (exact) dynamic programming algorithm, where $W$ is the maximum budget, but there is no lower bound which explains the strong exponential dependence on $d$. In this work, we show that the running times of the best-known PTAS and exact algorithm cannot be improved up to a polylogarithmic factor assuming Gap-ETH. Our techniques are based on a robust reduction from 2-CSP, which embeds 2-CSP constraints into a desired number of dimensions, exhibiting tight trade-off between $d$ and $\varepsilon$ for most regimes of the parameters. Informally, we obtain the following main results for $d$-dimensional knapsack. No $n^{o(d/\varepsilon \cdot 1/(\log(d/\varepsilon))^2)}$-time $(1-\varepsilon)$-approximation for every $\varepsilon = O(1/\log d)$. No $(n+W)^{o(d/\log d)}$-time exact algorithm (assuming ETH). No $n^{o(\sqrt{d})}$-time $(1-\varepsilon)$-approximation for constant $\varepsilon$. $(d \cdot \log W)^{O(d^2)} + n^{O(1)}$-time $\Omega(1/\sqrt{d})$-approximation and a matching $n^{O(1)}$-time lower~bound.

We consider a weakly supervised learning scenario where the supervision signal is generated by a transition function $\sigma$ of labels associated with multiple input instances. We formulate this problem as \emph{multi-instance Partial Label Learning (multi-instance PLL)}, which is an extension to the standard PLL problem. Our problem is met in different fields, including latent structural learning and neuro-symbolic integration. Despite the existence of many learning techniques, limited theoretical analysis has been dedicated to this problem. In this paper, we provide the first theoretical study of multi-instance PLL with possibly an unknown transition $\sigma$. Our main contributions are as follows. Firstly, we propose a necessary and sufficient condition for the learnability of the problem. This condition non-trivially generalizes and relaxes the existing small ambiguity degree in the PLL literature, since we allow the transition to be deterministic. Secondly, we derive Rademacher-style error bounds based on a top-$k$ surrogate loss that is widely used in the neuro-symbolic literature. Furthermore, we conclude with empirical experiments for learning under unknown transitions. The empirical results align with our theoretical findings; however, they also expose the issue of scalability in the weak supervision literature.

Since Harrow, Hassidim, and Lloyd (2009) showed that a system of linear equations with $N$ variables and condition number $\kappa$ can be solved on a quantum computer in $\operatorname{poly}(\log(N), \kappa)$ time, exponentially faster than any classical algorithms, its improvements and applications have been extensively investigated. The state-of-the-art quantum algorithm for this problem is due to Costa, An, Sanders, Su, Babbush, and Berry (2022), with optimal query complexity $\Theta(\kappa)$. An important question left is whether parallelism can bring further optimization. In this paper, we study the limitation of parallel quantum computing on this problem. We show that any quantum algorithm for solving systems of linear equations with time complexity $\operatorname{poly}(\log(N), \kappa)$ has a lower bound of $\Omega(\kappa)$ on the depth of queries, which is tight up to a constant factor.

Let ${\cal G}$ and ${\cal H}$ be minor-closed graph classes. The pair $({\cal H},{\cal G})$ is an Erd\H{o}s-P\'osa pair (EP-pair) if there is a function $f$ where, for every $k$ and every $G\in{\cal G},$ either $G$ has $k$ pairwise vertex-disjoint subgraphs not belonging to ${\cal H},$ or there is a set $S\subseteq V(G)$ where $|S|\leq f(k)$ and $G-S\in{\cal H}.$ The classic result of Erd\H{o}s and P\'osa says that if $\mathcal{F}$ is the class of forests, then $({\cal F},{\cal G})$ is an EP-pair for every ${\cal G}$. The class ${\cal G}$ is an EP-counterexample for ${\cal H}$ if ${\cal G}$ is minimal with the property that $({\cal H},{\cal G})$ is not an EP-pair. We prove that for every ${\cal H}$ the set $\mathfrak{C}_{\cal H}$ of all EP-counterexamples for ${\cal H}$ is finite. In particular, we provide a complete characterization of $\mathfrak{C}_{\cal H}$ for every ${\cal H}$ and give a constructive upper bound on its size. Each class ${\cal G}\in \mathfrak{C}_{\cal H}$ can be described as all minors of a sequence of grid-like graphs $\langle \mathscr{W}_{k} \rangle_{k\in \mathbb{N}}.$ Moreover, each $\mathscr{W}_{k}$ admits a half-integral packing: $k$ copies of some $H\not\in{\cal H}$ where no vertex is used more than twice. This gives a complete delineation of the half-integrality threshold of the Erd\H{o}s-P\'osa property for minors and yields a constructive proof of Thomas' conjecture on the half-integral Erd\H{o}s-P\'osa property for minors (recently confirmed, non-constructively, by Liu). Let $h$ be the maximum size of a graph in ${\cal H}.$ For every class ${\cal H},$ we construct an algorithm that, given a graph $G$ and a $k,$ either outputs a half-integral packing of $k$ copies of some $H \not\in {\cal H}$ or outputs a set of at most ${2^{k^{\cal O}_h(1)}}$ vertices whose deletion creates a graph in ${\cal H}$ in time $2^{2^{k^{{\cal O}_h(1)}}}\cdot |G|^4\log |G|.$

Given a graph $G=(V,E)$, a function $f:V\to \{0,1,2\}$ is said to be a \emph{Roman Dominating function} if for every $v\in V$ with $f(v)=0$, there exists a vertex $u\in N(v)$ such that $f(u)=2$. A Roman Dominating function $f$ is said to be an \emph{Independent Roman Dominating function} (or IRDF), if $V_1\cup V_2$ forms an independent set, where $V_i=\{v\in V~\vert~f(v)=i\}$, for $i\in \{0,1,2\}$. The total weight of $f$ is equal to $\sum_{v\in V} f(v)$, and is denoted as $w(f)$. The \emph{Independent Roman Domination Number} of $G$, denoted by $i_R(G)$, is defined as min$\{w(f)~\vert~f$ is an IRDF of $G\}$. For a given graph $G$, the problem of computing $i_R(G)$ is defined as the \emph{Minimum Independent Roman Domination problem}. The problem is already known to be NP-hard for bipartite graphs. In this paper, we further study the algorithmic complexity of the problem. In this paper, we propose a polynomial-time algorithm to solve the Minimum Independent Roman Domination problem for distance-hereditary graphs, split graphs, and $P_4$-sparse graphs.

We study a general factor analysis framework where the $n$-by-$p$ data matrix is assumed to follow a general exponential family distribution entry-wise. While this model framework has been proposed before, we here further relax its distributional assumption by using a quasi-likelihood setup. By parameterizing the mean-variance relationship on data entries, we additionally introduce a dispersion parameter and entry-wise weights to model large variations and missing values. The resulting model is thus not only robust to distribution misspecification but also more flexible and able to capture non-Gaussian covariance structures of the data matrix. Our main focus is on efficient computational approaches to perform the factor analysis. Previous modeling frameworks rely on simulated maximum likelihood (SML) to find the factorization solution, but this method was shown to lead to asymptotic bias when the simulated sample size grows slower than the square root of the sample size $n$, eliminating its practical application for data matrices with large $n$. Borrowing from expectation-maximization (EM) and stochastic gradient descent (SGD), we investigate three estimation procedures based on iterative factorization updates. Our proposed solution does not show asymptotic biases, and scales even better for large matrix factorizations with error $O(1/p)$. To support our findings, we conduct simulation experiments and discuss its application in three case studies.

We study a core algorithmic problem in network design called $\mathcal{F}$-augmentation that involves increasing the connectivity of a given family of cuts $\mathcal{F}$. Over 30 years ago, Williamson et al. (STOC `93) provided a 2-approximation primal-dual algorithm when $\mathcal{F}$ is a so-called uncrossable family but extending their results to families that are non-uncrossable has remained a challenging question. In this paper, we introduce the concept of the crossing density of a set family and show how this opens up a completely new approach to analyzing primal-dual algorithms. We study pliable families, a strict generalization of uncrossable families introduced by Bansal et al. (ICALP `23), and provide the first approximation algorithm for $\mathcal{F}$-augmentation of such families based on the crossing density. We also improve on the results in Bansal et al. (ICALP `23) by providing a 5-approximation algorithm for the $\mathcal{F}$-augmentation problem when $\mathcal{F}$ is a family of near min-cuts using the concept of crossing densities. This immediately improves approximation factors for the Capacitated Network Design Problem. Finally, we study the $(p,3)$-flexible graph connectivity problem. By carefully analyzing the structure of feasible solutions and using the techniques developed in this paper, we provide the first constant factor approximation algorithm for this problem exhibiting a 12-approximation algorithm.

北京阿比特科技有限公司