亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that the probability of the exceptional set decays exponentially for a broad class of randomized algorithms approximating solutions of ODEs, admitting a certain error decomposition. This class includes randomized explicit and implicit Euler schemes, and the randomized two-stage Runge-Kutta scheme (under inexact information). We design a confidence interval for the exact solution of an IVP and perform numerical experiments to illustrate the theoretical results.

相關內容

By defining two important terms called basic perturbation vectors and obtaining their linear bounds, we obtain the linear componentwise perturbation bounds for unitary factors and upper triangular factors of the generalized Schur decomposition. The perturbation bounds for the diagonal elements of the upper triangular factors and the generalized invariant subspace are also derived. From the former, we present an upper bound and a condition number of the generalized eigenvalue. Furthermore, with numerical iterative method, the nonlinear componentwise perturbation bounds of the generalized Schur decomposition are also provided. Numerical examples are given to test the obtained bounds. Among them, we compare our upper bound and condition number of the generalized eigenvalue with their counterparts given in the literature. Numerical results show that they are very close to each other but our results don't contain the information on the left and right generalized eigenvectors.

The Schrijver graph $S(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of $\{1,2,\ldots,n\}$ that do not include two consecutive elements modulo $n$, where two such sets are adjacent if they are disjoint. A result of Schrijver asserts that the chromatic number of $S(n,k)$ is $n-2k+2$ (Nieuw Arch. Wiskd., 1978). In the computational Schrijver problem, we are given an access to a coloring of the vertices of $S(n,k)$ with $n-2k+1$ colors, and the goal is to find a monochromatic edge. The Schrijver problem is known to be complete in the complexity class $\mathsf{PPA}$. We prove that it can be solved by a randomized algorithm with running time $n^{O(1)} \cdot k^{O(k)}$, hence it is fixed-parameter tractable with respect to the parameter $k$.

Approximate-message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing number of new iterations proposed for increasingly complex problems, ranging from multi-layer inference to low-rank matrix estimation with elaborate priors. In this paper, we address the following questions: is there a structure underlying all AMP iterations that unifies them in a common framework? Can we use such a structure to give a modular proof of state evolution equations, adaptable to new AMP iterations without reproducing each time the full argument ? We propose an answer to both questions, showing that AMP instances can be generically indexed by an oriented graph. This enables to give a unified interpretation of these iterations, independent from the problem they solve, and a way of composing them arbitrarily. We then show that all AMP iterations indexed by such a graph admit rigorous SE equations, extending the reach of previous proofs, and proving a number of recent heuristic derivations of those equations. Our proof naturally includes non-separable functions and we show how existing refinements, such as spatial coupling or matrix-valued variables, can be combined with our framework.

We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018)} to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control \simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).

Recently, Graph Neural Networks (GNNs) have been applied for scheduling jobs over clusters, achieving better performance than hand-crafted heuristics. Despite their impressive performance, concerns remain over whether these GNN-based job schedulers meet users' expectations about other important properties, such as strategy-proofness, sharing incentive, and stability. In this work, we consider formal verification of GNN-based job schedulers. We address several domain-specific challenges such as networks that are deeper and specifications that are richer than those encountered when verifying image and NLP classifiers. We develop vegas, the first general framework for verifying both single-step and multi-step properties of these schedulers based on carefully designed algorithms that combine abstractions, refinements, solvers, and proof transfer. Our experimental results show that vegas achieves significant speed-up when verifying important properties of a state-of-the-art GNN-based scheduler compared to previous methods.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

As the next-generation wireless networks thrive, full-duplex and relaying techniques are combined to improve the network performance. Random linear network coding (RLNC) is another popular technique to enhance the efficiency and reliability in wireless communications. In this paper, in order to explore the potential of RLNC in full-duplex relay networks, we investigate two fundamental perfect RLNC schemes and theoretically analyze their completion delay performance. The first scheme is a straightforward application of conventional perfect RLNC studied in wireless broadcast, so it involves no additional process at the relay. Its performance serves as an upper bound among all perfect RLNC schemes. The other scheme allows sufficiently large buffer and unconstrained linear coding at the relay. It attains the optimal performance and serves as a lower bound among all RLNC schemes. For both schemes, closed-form formulae to characterize the expected completion delay at a single receiver as well as for the whole system are derived. Numerical results are also demonstrated to justify the theoretical characterizations, and compare the two new schemes with the existing one.

Let $m$ be a positive integer and $p$ a prime. In this paper, we investigate the differential properties of the power mapping $x^{p^m+2}$ over $\mathbb{F}_{p^n}$, where $n=2m$ or $n=2m-1$. For the case $n=2m$, by transforming the derivative equation of $x^{p^m+2}$ and studying some related equations, we completely determine the differential spectrum of this power mapping. For the case $n=2m-1$, the derivative equation can be transformed to a polynomial of degree $p+3$. The problem is more difficult and we obtain partial results about the differential spectrum of $x^{p^m+2}$.

This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.

We prove linear convergence of gradient descent to a global minimum for the training of deep residual networks with constant layer width and smooth activation function. We further show that the trained weights, as a function of the layer index, admits a scaling limit which is H\"older continuous as the depth of the network tends to infinity. The proofs are based on non-asymptotic estimates of the loss function and of norms of the network weights along the gradient descent path. We illustrate the relevance of our theoretical results to practical settings using detailed numerical experiments on supervised learning problems.

北京阿比特科技有限公司