Quantitative tissue information, like the light scattering properties, is considered as a key player in the detection of cancerous cells in medical diagnosis. A promising method to obtain these data is optical coherence tomography (OCT). In this article, we will therefore discuss the refractive index reconstruction from OCT data, employing a Gaussian beam based forward model. We consider in particular samples with a layered structure, meaning that the refractive index as a function of depth is well approximated by a piece-wise constant function. For the reconstruction, we present a layer-by-layer method where in every step the refractive index is obtained via a discretized least squares minimization. For an approximated form of the minimization problem, we present an existence and uniqueness result. The applicability of the proposed method is then verified by reconstructing refractive indices of layered media from both simulated and experimental OCT data.
This paper focuses on the impact of leveraging autonomous offensive approaches in Deep Reinforcement Learning (DRL) to train more robust agents by exploring the impact of applying adversarial learning to DRL for autonomous security in Software Defined Networks (SDN). Two algorithms, Double Deep Q-Networks (DDQN) and Neural Episodic Control to Deep Q-Network (NEC2DQN or N2D), are compared. NEC2DQN was proposed in 2018 and is a new member of the deep q-network (DQN) family of algorithms. The attacker has full observability of the environment and access to a causative attack that uses state manipulation in an attempt to poison the learning process. The implementation of the attack is done under a white-box setting, in which the attacker has access to the defender's model and experiences. Two games are played; in the first game, DDQN is a defender and N2D is an attacker, and in second game, the roles are reversed. The games are played twice; first, without an active causative attack and secondly, with an active causative attack. For execution, three sets of game results are recorded in which a single set consists of 10 game runs. The before and after results are then compared in order to see if there was actually an improvement or degradation. The results show that with minute parameter changes made to the algorithms, there was growth in the attacker's role, since it is able to win games. Implementation of the adversarial learning by the introduction of the causative attack showed the algorithms are still able to defend the network according to their strengths.
Many hotels target guest acquisition efforts to specific markets in order to best anticipate individual preferences and needs of their guests. Likewise, such strategic positioning is a prerequisite for efficient marketing budget allocation. Official statistics report on the number of visitors from different countries, but no fine-grained information on the guest composition of individual businesses exists. There is, however, growing interest in such data from competitors, suppliers, researchers and the general public. We demonstrate how machine learning can be leveraged to extract references to guest nationalities from unstructured text reviews in order to dynamically assess and monitor the dynamics of guest composition of individual businesses. In particular, we show that a rather simple architecture of pre-trained embeddings and stacked LSTM layers provides a better performance-runtime tradeoff than more complex state-of-the-art language models.
How to generate diverse, life-like, and unlimited long head/body sequences without any driving source? We argue that this under-investigated research problem is non-trivial at all, and has unique technical challenges behind it. Without semantic constraints from the driving sources, using the standard autoregressive model to generate infinitely long sequences would easily result in 1) out-of-distribution (OOD) issue due to the accumulated error, 2) insufficient diversity to produce natural and life-like motion sequences and 3) undesired periodic patterns along the time. To tackle the above challenges, we propose a systematic framework that marries the benefits of VQ-VAE and a novel token-level control policy trained with reinforcement learning using carefully designed reward functions. A high-level prior model can be easily injected on top to generate unlimited long and diverse sequences. Although we focus on no driving sources now, our framework can be generalized for controlled synthesis with explicit driving sources. Through comprehensive evaluations, we conclude that our proposed framework can address all the above-mentioned challenges and outperform other strong baselines very significantly.
Recent diffusion probabilistic models (DPMs) have shown remarkable abilities of generated content, however, they often suffer from complex forward processes, resulting in inefficient solutions for the reversed process and prolonged sampling times. In this paper, we aim to address the aforementioned challenges by focusing on the diffusion process itself that we propose to decouple the intricate diffusion process into two comparatively simpler process to improve the generative efficacy and speed. In particular, we present a novel diffusion paradigm named DDM (Decoupled Diffusion Models) based on the Ito diffusion process, in which the image distribution is approximated by an explicit transition probability while the noise path is controlled by the standard Wiener process. We find that decoupling the diffusion process reduces the learning difficulty and the explicit transition probability improves the generative speed significantly. We prove a new training objective for DPM, which enables the model to learn to predict the noise and image components separately. Moreover, given the novel forward diffusion equation, we derive the reverse denoising formula of DDM that naturally supports fewer steps of generation without ordinary differential equation (ODE) based accelerators. Our experiments demonstrate that DDM outperforms previous DPMs by a large margin in fewer function evaluations setting and gets comparable performances in long function evaluations setting. We also show that our framework can be applied to image-conditioned generation and high-resolution image synthesis, and that it can generate high-quality images with only 10 function evaluations.
Passive acoustic monitoring offers a scalable, non-invasive method for tracking global biodiversity and anthropogenic impacts on species. Although deep learning has become a vital tool for processing this data, current models are inflexible, typically cover only a handful of species, and are limited by data scarcity. In this work, we propose BioLingual, a new model for bioacoustics based on contrastive language-audio pretraining. We first aggregate bioacoustic archives into a language-audio dataset, called AnimalSpeak, with over a million audio-caption pairs holding information on species, vocalization context, and animal behavior. After training on this dataset to connect language and audio representations, our model can identify over a thousand species' calls across taxa, complete bioacoustic tasks zero-shot, and retrieve animal vocalization recordings from natural text queries. When fine-tuned, BioLingual sets a new state-of-the-art on nine tasks in the Benchmark of Animal Sounds. Given its broad taxa coverage and ability to be flexibly queried in human language, we believe this model opens new paradigms in ecological monitoring and research, including free-text search on the world's acoustic monitoring archives. We open-source our models, dataset, and code.
Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior in human-centric contexts often requires querying users, who typically cannot provide precise metric scores. Existing approaches leverage human feedback in an attempt to model an implicit reward function; however, this reward may be difficult or impossible to effectively capture. In this work, we introduce SortCMA to optimize algorithm parameter configurations in high dimensions based on pairwise user preferences. SortCMA efficiently and robustly leverages user input to find parameter sets without directly modeling a reward. We apply this method to tuning a commercial depth sensor without ground truth, and to robot social navigation, which involves highly complex preferences over robot behavior. We show that our method succeeds in optimizing for the user's goals and perform a user study to evaluate social navigation results.
We study a two-player game on a graph between an attacker and a defender. To begin with, the defender places guards on a subset of vertices. In each move, the attacker attacks an edge. The defender must move at least one guard across the attacked edge to defend the attack. The defender wins if and only if the defender can defend an infinite sequence of attacks. The smallest number of guards with which the defender has a winning strategy is called the eternal vertex cover number of a graph $G$ and is denoted by $evc(G)$. It is clear that $evc(G)$ is at least $mvc(G)$, the size of a minimum vertex cover of $G$. We say that $G$ is Spartan if $evc(G) = mvc(G)$. The characterization of Spartan graphs has been largely open. In the setting of bipartite graphs on $2n$ vertices where every edge belongs to a perfect matching, an easy strategy is to have $n$ guards that always move along perfect matchings in response to attacks. We show that these are essentially the only Spartan bipartite graphs.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.