亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The thesis develops a view of design in a concept formation framework and outlines a language to describe both the object of the design and the process of designing. The unknown object at the outset of the design work may be seen as an unknown concept that the designer is to define. Throughout the process, she develops a description of this object by relating it to known concepts. The search stops when the designer is satisfied that the design specification is complete enough to satisfy the requirements from it once built. It is then a collection of propositions that all contribute towards defining the design object - a collection of sentences describing relationships between the object and known concepts. Also, the design process itself may be described by relating known concepts - by organizing known abilities into particular patterns of activation, or mobilization. In view of the demands posed to a language to use in this concept formation process, the framework of a Design Process Language (DPL) is developed. The basis for the language are linguistic categories that act as classes of relations used to combine concepts, containing relations used for describing process and object within the same general system, with some relations being process specific, others being object specific, and with the bulk being used both for process and object description. Another outcome is the distinction of modal relations, or relations describing futurity, possibility, willingness, hypothetical events, and the like. The design process almost always includes aspects such as these, and it is thus necessary for a language facilitating design process description to support such relationships to be constructed. The DPL is argued to be a foundation whereupon to build a language that can be used for enabling computers to be more useful - act more intelligently - in the design process.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

The identifiability of latent variable models has received increasing attention due to its relevance in interpretability and out-of-distribution generalisation. In this work, we study the identifiability of Switching Dynamical Systems, taking an initial step toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.

Generative Retrieval (GR) is an emerging paradigm in information retrieval that leverages generative models to directly map queries to relevant document identifiers (DocIDs) without the need for traditional query processing or document reranking. This survey provides a comprehensive overview of GR, highlighting key developments, indexing and retrieval strategies, and challenges. We discuss various document identifier strategies, including numerical and string-based identifiers, and explore different document representation methods. Our primary contribution lies in outlining future research directions that could profoundly impact the field: improving the quality of query generation, exploring learnable document identifiers, enhancing scalability, and integrating GR with multi-task learning frameworks. By examining state-of-the-art GR techniques and their applications, this survey aims to provide a foundational understanding of GR and inspire further innovations in this transformative approach to information retrieval. We also make the complementary materials such as paper collection publicly available at //github.com/MiuLab/GenIR-Survey/

Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access. Our code is available at //github.com/watml/disguised_copyright_infringement.

An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.

Compositional generalization, representing the model's ability to generate text with new attribute combinations obtained by recombining single attributes from the training data, is a crucial property for multi-aspect controllable text generation (MCTG) methods. Nonetheless, a comprehensive compositional generalization evaluation benchmark of MCTG is still lacking. We propose CompMCTG, a benchmark encompassing diverse multi-aspect labeled datasets and a crafted three-dimensional evaluation protocol, to holistically evaluate the compositional generalization of MCTG approaches. We observe that existing MCTG works generally confront a noticeable performance drop in compositional testing. To mitigate this issue, we introduce Meta-MCTG, a training framework incorporating meta-learning, where we enable models to learn how to generalize by simulating compositional generalization scenarios in the training phase. We demonstrate the effectiveness of Meta-MCTG through achieving obvious improvement (by at most 3.64%) for compositional testing performance in 94.4% cases.

With the technological advances in machine learning, effective ways are available to process the huge amount of data generated in real life. However, issues of privacy and scalability will constrain the development of machine learning. Federated learning (FL) can prevent privacy leakage by assigning training tasks to multiple clients, thus separating the central server from the local devices. However, FL still suffers from shortcomings such as single-point-failure and malicious data. The emergence of blockchain provides a secure and efficient solution for the deployment of FL. In this paper, we conduct a comprehensive survey of the literature on blockchained FL (BCFL). First, we investigate how blockchain can be applied to federal learning from the perspective of system composition. Then, we analyze the concrete functions of BCFL from the perspective of mechanism design and illustrate what problems blockchain addresses specifically for FL. We also survey the applications of BCFL in reality. Finally, we discuss some challenges and future research directions.

Recent work has provided indirect evidence that pretraining language models on code improves the ability of models to track state changes of discourse entities expressed in natural language. In this work, we systematically test this claim by comparing pairs of language models on their entity tracking performance. Critically, the pairs consist of base models and models trained on top of these base models with additional code data. We extend this analysis to additionally examine the effect of math training, another highly structured data type, and alignment tuning, an important step for enhancing the usability of models. We find clear evidence that models additionally trained on large amounts of code outperform the base models. On the other hand, we find no consistent benefit of additional math training or alignment tuning across various model families.

The Robust Satisficing (RS) model is an emerging approach to robust optimization, offering streamlined procedures and robust generalization across various applications. However, the statistical theory of RS remains unexplored in the literature. This paper fills in the gap by comprehensively analyzing the theoretical properties of the RS model. Notably, the RS structure offers a more straightforward path to deriving statistical guarantees compared to the seminal Distributionally Robust Optimization (DRO), resulting in a richer set of results. In particular, we establish two-sided confidence intervals for the optimal loss without the need to solve a minimax optimization problem explicitly. We further provide finite-sample generalization error bounds for the RS optimizer. Importantly, our results extend to scenarios involving distribution shifts, where discrepancies exist between the sampling and target distributions. Our numerical experiments show that the RS model consistently outperforms the baseline empirical risk minimization in small-sample regimes and under distribution shifts. Furthermore, compared to the DRO model, the RS model exhibits lower sensitivity to hyperparameter tuning, highlighting its practicability for robustness considerations.

Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets. However, constructing ROMs from noisy high-dimensional data is challenging. In this work, we propose a data-driven, non-intrusive method that utilizes stochastic variational deep kernel learning (SVDKL) to discover low-dimensional latent spaces from data and a recurrent version of SVDKL for representing and predicting the evolution of latent dynamics. The proposed method is demonstrated with two challenging examples -- a double pendulum and a reaction-diffusion system. Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) quantifying modeling uncertainties.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

北京阿比特科技有限公司