亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text sequence generation and evolution, this paper illustrates the strong consistency of LLMs and EAs, which includes multiple one-to-one key characteristics: token embedding and genotype-phenotype mapping, position encoding and fitness shaping, position embedding and selection, attention and crossover, feed-forward neural network and mutation, model training and parameter update, and multi-task learning and multi-objective optimization. Based on this consistency perspective, existing coupling studies are analyzed, including evolutionary fine-tuning and LLM-enhanced EAs. Leveraging these insights, we outline a fundamental roadmap for future research in coupling LLMs and EAs, while highlighting key challenges along the way. The consistency not only reveals the evolution mechanism behind LLMs but also facilitates the development of evolved artificial agents that approach or surpass biological organisms.

相關內容

Traditional dataset retrieval systems index on metadata information rather than on the data values. Thus relying primarily on manual annotations and high-quality metadata, processes known to be labour-intensive and challenging to automate. We propose a method to support metadata enrichment with topic annotations of column headers using three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to classify column headers based on domain-specific topics from a controlled vocabulary. We evaluate our approach by assessing the internal consistency of the LLMs, the inter-machine alignment, and the human-machine agreement for the topic classification task. Additionally, we investigate the impact of contextual information (i.e. dataset description) on the classification outcomes. Our results suggest that ChatGPT and GoogleGemini outperform GoogleBard for internal consistency as well as LLM-human-alignment. Interestingly, we found that context had no impact on the LLMs performances. This work proposes a novel approach that leverages LLMs for text classification using a controlled topic vocabulary, which has the potential to facilitate automated metadata enrichment, thereby enhancing dataset retrieval and the Findability, Accessibility, Interoperability and Reusability (FAIR) of research data on the Web.

Despite recent availability of large transcribed Kinyarwanda speech data, achieving robust speech recognition for Kinyarwanda is still challenging. In this work, we show that using self-supervised pre-training, following a simple curriculum schedule during fine-tuning and using semi-supervised learning to leverage large unlabelled speech data significantly improve speech recognition performance for Kinyarwanda. Our approach focuses on using public domain data only. A new studio-quality speech dataset is collected from a public website, then used to train a clean baseline model. The clean baseline model is then used to rank examples from a more diverse and noisy public dataset, defining a simple curriculum training schedule. Finally, we apply semi-supervised learning to label and learn from large unlabelled data in five successive generations. Our final model achieves 3.2% word error rate (WER) on the new dataset and 15.6% WER on Mozilla Common Voice benchmark, which is state-of-the-art to the best of our knowledge. Our experiments also indicate that using syllabic rather than character-based tokenization results in better speech recognition performance for Kinyarwanda.

This paper systematically compares different methods of deriving item-level predictions of language models for multiple-choice tasks. It compares scoring methods for answer options based on free generation of responses, various probability-based scores, a Likert-scale style rating method, and embedding similarity. In a case study on pragmatic language interpretation, we find that LLM predictions are not robust under variation of method choice, both within a single LLM and across different LLMs. As this variability entails pronounced researcher degrees of freedom in reporting results, knowledge of the variability is crucial to secure robustness of results and research integrity.

Long quantum codes using projective Reed-Muller codes are constructed. Projective Reed-Muller are evaluation codes obtained by evaluating homogeneous polynomials at the projective space. We obtain asymmetric and symmetric quantum codes by using the CSS construction and the Hermitian construction, respectively. We provide entanglement-assisted quantum error-correcting codes from projective Reed-Muller codes with flexible amounts of entanglement by considering equivalent codes. Moreover, we also construct quantum codes from subfield subcodes of projective Reed-Muller codes.

Hundreds of millions of people now interact with language models, with uses ranging from serving as a writing aid to informing hiring decisions. Yet these language models are known to perpetuate systematic racial prejudices, making their judgments biased in problematic ways about groups like African Americans. While prior research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice: we extend research showing that Americans hold raciolinguistic stereotypes about speakers of African American English and find that language models have the same prejudice, exhibiting covert stereotypes that are more negative than any human stereotypes about African Americans ever experimentally recorded, although closest to the ones from before the civil rights movement. By contrast, the language models' overt stereotypes about African Americans are much more positive. We demonstrate that dialect prejudice has the potential for harmful consequences by asking language models to make hypothetical decisions about people, based only on how they speak. Language models are more likely to suggest that speakers of African American English be assigned less prestigious jobs, be convicted of crimes, and be sentenced to death. Finally, we show that existing methods for alleviating racial bias in language models such as human feedback training do not mitigate the dialect prejudice, but can exacerbate the discrepancy between covert and overt stereotypes, by teaching language models to superficially conceal the racism that they maintain on a deeper level. Our findings have far-reaching implications for the fair and safe employment of language technology.

We systematically evaluated the performance of seven large language models in generating programming code using various prompt strategies, programming languages, and task difficulties. GPT-4 substantially outperforms other large language models, including Gemini Ultra and Claude 2. The coding performance of GPT-4 varies considerably with different prompt strategies. In most LeetCode and GeeksforGeeks coding contests evaluated in this study, GPT-4 employing the optimal prompt strategy outperforms 85 percent of human participants. Additionally, GPT-4 demonstrates strong capabilities in translating code between different programming languages and in learning from past errors. The computational efficiency of the code generated by GPT-4 is comparable to that of human programmers. These results suggest that GPT-4 has the potential to serve as a reliable assistant in programming code generation and software development.

We derive sharp-interface models for one-dimensional brittle fracture via the inverse-deformation approach. Methods of Gamma-convergence are employed to obtain the singular limits of previously proposed models. The latter feature a local, non-convex stored energy of inverse strain, augmented by small interfacial energy, formulated in terms of the inverse-strain gradient. They predict spontaneous fracture with exact crack-opening discontinuities, without the use of damage (phase) fields or pre-existing cracks; crack faces are endowed with a thin layer of surface energy. The models obtained herewith inherit the same properties, except that surface energy is now concentrated at the crack faces. Accordingly, we construct energy-minimizing configurations. For a composite bar with a breakable layer, our results predict a pattern of equally spaced cracks whose number is given as an increasing function of applied load.

In this short note we formulate a stabilizer formalism in the language of noncommutative graphs. The classes of noncommutative graphs we consider are obtained via unitary representations of compact groups, and suitably chosen operators on finite-dimensional Hilbert spaces. Furthermore, in this framework, we generalize previous results in this area for determining when such noncommutative graphs have anticliques.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司