亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The spectrum of mutations in a collection of cancer genomes can be described by a mixture of a few mutational signatures. The mutational signatures can be found using non-negative matrix factorization (NMF). To extract the mutational signatures we have to assume a distribution for the observed mutational counts and a number of mutational signatures. In most applications, the mutational counts are assumed to be Poisson distributed, but they are often overdispersed, and thus the Negative Binomial distribution is more appropriate. We demonstrate using a simulation study that Negative Binomial NMF requires fewer signatures than Poisson NMF to fit the data and we propose a Negative Binomial NMF with a patient specific overdispersion parameter to capture the variation across patients. We also introduce a robust model selection procedure inspired by cross-validation to determine the number of signatures. Furthermore we study the influence of the distributional assumption in relation to two classical model selection procedures: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). In the presence of overdispersion we show that our model selection procedure is more robust at determining the correct number of signatures than state-of-the-art methods, which are overestimating the number of signatures. We apply our proposed analysis on a wide range of simulated data and on a data set from breast cancer patients. The code for our algorithms and analysis is available in the R package SigMoS and can be found at //github.com/MartaPelizzola/SigMoS.

相關內容

In the field of 3D perception using 3D LiDAR sensors, ground segmentation is an essential task for various purposes, such as traversable area detection and object recognition. Under these circumstances, several ground segmentation methods have been proposed. However, some limitations are still encountered. First, some ground segmentation methods require fine-tuning of parameters depending on the surroundings, which is excessively laborious and time-consuming. Moreover, even if the parameters are well adjusted, a partial under-segmentation problem can still emerge, which implies ground segmentation failures in some regions. Finally, ground segmentation methods typically fail to estimate an appropriate ground plane when the ground is above another structure, such as a retaining wall. To address these problems, we propose a robust ground segmentation method called Patchwork++, an extension of Patchwork. Patchwork++ exploits adaptive ground likelihood estimation (A-GLE) to calculate appropriate parameters adaptively based on the previous ground segmentation results. Moreover, temporal ground revert (TGR) alleviates a partial under-segmentation problem by using the temporary ground property. Also, region-wise vertical plane fitting (R-VPF) is introduced to segment the ground plane properly even if the ground is elevated with different layers. Finally, we present reflected noise removal (RNR) to eliminate virtual noise points efficiently based on the 3D LiDAR reflection model. We demonstrate the qualitative and quantitative evaluations using a SemanticKITTI dataset. Our code is available at //github.com/url-kaist/patchwork-plusplus

We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the $L_1$-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our $L_1$-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all $p\ge 0$, there exists a constant $C_p>1$ such that any $C_p$-approximation algorithm for $F_p$ moment estimation in insertion-only streams with a white-box adversary requires $\Omega(n)$ space for a universe of size $n$. Similarly, there is a constant $C>1$ such that any $C$-approximation algorithm in an insertion-only stream for matrix rank requires $\Omega(n)$ space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)

Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.

LU and Cholesky matrix factorization algorithms are core subroutines used to solve systems of linear equations (SLEs) encountered while solving an optimization problem. Standard factorization algorithms are highly efficient but remain susceptible to the accumulation of roundoff errors, which can lead solvers to return feasibility and optimality claims that are actually invalid. This paper introduces a novel approach for solving sequences of closely related SLEs encountered in nonlinear programming efficiently and without roundoff errors. Specifically, it introduces rank-one update algorithms for the roundoff-error-free (REF) factorization framework, a toolset built on integer-preserving arithmetic that has led to the development and implementation of fail-proof SLE solution subroutines for linear programming. The formal guarantees of the proposed algorithms are established through the derivation of theoretical insights. Their advantages are supported with computational experiments, which demonstrate upwards of 75x-improvements over exact factorization run-times on fully dense matrices with over one million entries. A significant advantage of the methodology is that the length of any coefficient calculated via the proposed algorithms is bounded polynomially in the size of the inputs without having to resort to greatest common divisor operations, which are required by and thereby hinder an efficient implementation of exact rational arithmetic approaches.

Implicit Processes (IPs) represent a flexible framework that can be used to describe a wide variety of models, from Bayesian neural networks, neural samplers and data generators to many others. IPs also allow for approximate inference in function-space. This change of formulation solves intrinsic degenerate problems of parameter-space approximate inference concerning the high number of parameters and their strong dependencies in large models. For this, previous works in the literature have attempted to employ IPs both to set up the prior and to approximate the resulting posterior. However, this has proven to be a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot tune the prior IP to the observed data. We propose here the first method that can accomplish both goals. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.

In recent years, video instance segmentation (VIS) has been largely advanced by offline models, while online models gradually attracted less attention possibly due to their inferior performance. However, online methods have their inherent advantage in handling long video sequences and ongoing videos while offline models fail due to the limit of computational resources. Therefore, it would be highly desirable if online models can achieve comparable or even better performance than offline models. By dissecting current online models and offline models, we demonstrate that the main cause of the performance gap is the error-prone association between frames caused by the similar appearance among different instances in the feature space. Observing this, we propose an online framework based on contrastive learning that is able to learn more discriminative instance embeddings for association and fully exploit history information for stability. Despite its simplicity, our method outperforms all online and offline methods on three benchmarks. Specifically, we achieve 49.5 AP on YouTube-VIS 2019, a significant improvement of 13.2 AP and 2.1 AP over the prior online and offline art, respectively. Moreover, we achieve 30.2 AP on OVIS, a more challenging dataset with significant crowding and occlusions, surpassing the prior art by 14.8 AP. The proposed method won first place in the video instance segmentation track of the 4th Large-scale Video Object Segmentation Challenge (CVPR2022). We hope the simplicity and effectiveness of our method, as well as our insight into current methods, could shed light on the exploration of VIS models.

Surface reconstruction from a set of scattered points, or a point cloud, has many applications ranging from computer graphics to remote sensing. We present a new method for this task that produces an implicit surface (zero-level set) approximation for an oriented point cloud using only information about (approximate) normals to the surface. The technique exploits the fundamental result from vector calculus that the normals to an implicit surface are curl-free. By using a curl-free radial basis function (RBF) interpolation of the normals, we can extract a potential for the vector field whose zero-level surface approximates the point cloud. We use curl-free RBFs based on polyharmonic splines for this task, since they are free of any shape or support parameters. Furthermore, to make this technique efficient and able to better represent local sharp features, we combine it with a partition of unity (PU) method. The result is the curl-free partition of unity (CFPU) method. We show how CFPU can be adapted to enforce exact interpolation of a point cloud and can be regularized to handle noise in both the normal vectors and the point positions. Numerical results are presented that demonstrate how the method converges for a known surface as the sampling density increases, how regularization handles noisy data, and how the method performs on various problems found in the literature.

A time-varying zero-inflated serially dependent Poisson process is proposed. The model assumes that the intensity of the Poisson Process evolves according to a generalized autoregressive conditional heteroscedastic (GARCH) formulation. The proposed model is a generalization of the zero-inflated Poisson Integer GARCH model proposed by Fukang Zhu in 2012, which in return is a generalization of the Integer GARCH (INGARCH) model introduced by Ferland, Latour, and Oraichi in 2006. The proposed model builds on previous work by allowing the zero-inflation parameter to vary over time, governed by a deterministic function or by an exogenous variable. Both the Expectation Maximization (EM) and the Maximum Likelihood Estimation (MLE) approaches are presented as possible estimation methods. A simulation study shows that both parameter estimation methods provide good estimates. Applications to two real-life data sets show that the proposed INGARCH model provides a better fit than the traditional zero-inflated INGARCH model in the cases considered.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

北京阿比特科技有限公司