The practical importance of coherent forecasts in hierarchical forecasting has inspired many studies on forecast reconciliation. Under this approach, so-called base forecasts are produced for every series in the hierarchy and are subsequently adjusted to be coherent in a second reconciliation step. Reconciliation methods have been shown to improve forecast accuracy, but will, in general, adjust the base forecast of every series. However, in an operational context, it is sometimes necessary or beneficial to keep forecasts of some variables unchanged after forecast reconciliation. In this paper, we formulate reconciliation methodology that keeps forecasts of a pre-specified subset of variables unchanged or "immutable". In contrast to existing approaches, these immutable forecasts need not all come from the same level of a hierarchy, and our method can also be applied to grouped hierarchies. We prove that our approach preserves unbiasedness in base forecasts. Our method can also account for correlations between base forecasting errors and ensure non-negativity of forecasts. We also perform empirical experiments, including an application to sales of a large scale online retailer, to assess the impacts of our proposed methodology.
Event cameras are bio-inspired sensors that perform well in challenging illumination conditions and have high temporal resolution. However, their concept is fundamentally different from traditional frame-based cameras. The pixels of an event camera operate independently and asynchronously. They measure changes of the logarithmic brightness and return them in the highly discretised form of time-stamped events indicating a relative change of a certain quantity since the last event. New models and algorithms are needed to process this kind of measurements. The present work looks at several motion estimation problems with event cameras. The flow of the events is modelled by a general homographic warping in a space-time volume, and the objective is formulated as a maximisation of contrast within the image of warped events. Our core contribution consists of deriving globally optimal solutions to these generally non-convex problems, which removes the dependency on a good initial guess plaguing existing methods. Our methods rely on branch-and-bound optimisation and employ novel and efficient, recursive upper and lower bounds derived for six different contrast estimation functions. The practical validity of our approach is demonstrated by a successful application to three different event camera motion estimation problems.
We present a robust framework to perform linear regression with missing entries in the features. By considering an elliptical data distribution, and specifically a multivariate normal model, we are able to conditionally formulate a distribution for the missing entries and present a robust framework, which minimizes the worst case error caused by the uncertainty about the missing data. We show that the proposed formulation, which naturally takes into account the dependency between different variables, ultimately reduces to a convex program, for which a customized and scalable solver can be delivered. In addition to a detailed analysis to deliver such solver, we also asymptoticly analyze the behavior of the proposed framework, and present technical discussions to estimate the required input parameters. We complement our analysis with experiments performed on synthetic, semi-synthetic, and real data, and show how the proposed formulation improves the prediction accuracy and robustness, and outperforms the competing techniques.
Graph Transformers have demonstrated superiority on various graph learning tasks in recent years. However, the complexity of existing Graph Transformers scales quadratically with the number of nodes, making it hard to scale to graphs with thousands of nodes. To this end, we propose a Neighborhood Aggregation Graph Transformer (NAGphormer) that is scalable to large graphs with millions of nodes. Before feeding the node features into the Transformer model, NAGphormer constructs tokens for each node by a neighborhood aggregation module called Hop2Token. For each node, Hop2Token aggregates neighborhood features from each hop into a representation, and thereby produces a sequence of token vectors. Subsequently, the resulting sequence of different hop information serves as input to the Transformer model. By considering each node as a sequence, NAGphormer could be trained in a mini-batch manner and thus could scale to large graphs. NAGphormer further develops an attention-based readout function so as to learn the importance of each hop adaptively. We conduct extensive experiments on various popular benchmarks, including six small datasets and three large datasets. The results demonstrate that NAGphormer consistently outperforms existing Graph Transformers and mainstream Graph Neural Networks.
Cross-validation is a widely-used technique to estimate prediction error, but its behavior is complex and not fully understood. Ideally, one would like to think that cross-validation estimates the prediction error for the model at hand, fit to the training data. We prove that this is not the case for the linear model fit by ordinary least squares; rather it estimates the average prediction error of models fit on other unseen training sets drawn from the same population. We further show that this phenomenon occurs for most popular estimates of prediction error, including data splitting, bootstrapping, and Mallow's Cp. Next, the standard confidence intervals for prediction error derived from cross-validation may have coverage far below the desired level. Because each data point is used for both training and testing, there are correlations among the measured accuracies for each fold, and so the usual estimate of variance is too small. We introduce a nested cross-validation scheme to estimate this variance more accurately, and we show empirically that this modification leads to intervals with approximately correct coverage in many examples where traditional cross-validation intervals fail.
Wireless sensor networks are among the most promising technologies of the current era because of their small size, lower cost, and ease of deployment. With the increasing number of wireless sensors, the probability of generating missing data also rises. This incomplete data could lead to disastrous consequences if used for decision-making. There is rich literature dealing with this problem. However, most approaches show performance degradation when a sizable amount of data is lost. Inspired by the emerging field of graph signal processing, this paper performs a new study of a Sobolev reconstruction algorithm in wireless sensor networks. Experimental comparisons on several publicly available datasets demonstrate that the algorithm surpasses multiple state-of-the-art techniques by a maximum margin of 54%. We further show that this algorithm consistently retrieves the missing data even during massive data loss situations.
Rule sets are highly interpretable logical models in which the predicates for decision are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently, the overall model comprises an unordered collection of if-then decision rules. In this paper, we consider a submodular optimization based approach for learning rule sets. The learning problem is framed as a subset selection task in which a subset of all possible rules needs to be selected to form an accurate and interpretable rule set. We employ an objective function that exhibits submodularity and thus is amenable to submodular optimization techniques. To overcome the difficulty arose from dealing with the exponential-sized ground set of rules, the subproblem of searching a rule is casted as another subset selection task that asks for a subset of features. We show it is possible to write the induced objective function for the subproblem as a difference of two submodular (DS) functions to make it approximately solvable by DS optimization algorithms. Overall, the proposed approach is simple, scalable, and likely to be benefited from further research on submodular optimization. Experiments on real datasets demonstrate the effectiveness of our method.
The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policy makers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.
Two of the most significant challenges in uncertainty quantification pertain to the high computational cost for simulating complex physical models and the high dimension of the random inputs. In applications of practical interest, both of these problems are encountered, and standard methods either fail or are not feasible. To overcome the current limitations, we present a generalized formulation of a Bayesian multi-fidelity Monte-Carlo (BMFMC) framework that can exploit lower-fidelity model versions in a small data regime. The goal of our analysis is an efficient and accurate estimation of the complete probabilistic response for high-fidelity models. BMFMC circumvents the curse of dimensionality by learning the relationship between the outputs of a reference high-fidelity model and potentially several lower-fidelity models. While the continuous formulation is mathematically exact and independent of the low-fidelity model's accuracy, we address challenges associated with the small data regime (i.e., only a small number of 50 to 300 high-fidelity model runs can be performed). Specifically, we complement the formulation with a set of informative input features at no extra cost. Despite the inaccurate and noisy information that some low-fidelity models provide, we demonstrate that accurate and certifiable estimates for the quantities of interest can be obtained for uncertainty quantification problems in high stochastic dimensions, with significantly fewer high-fidelity model runs than state-of-the-art methods for uncertainty quantification. We illustrate our approach by applying it to challenging numerical examples such as Navier-Stokes flow simulations and fluid-structure interaction problems.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
This paper addresses the difficulty of forecasting multiple financial time series (TS) conjointly using deep neural networks (DNN). We investigate whether DNN-based models could forecast these TS more efficiently by learning their representation directly. To this end, we make use of the dynamic factor graph (DFG) from that we enhance by proposing a novel variable-length attention-based mechanism to render it memory-augmented. Using this mechanism, we propose an unsupervised DNN architecture for multivariate TS forecasting that allows to learn and take advantage of the relationships between these TS. We test our model on two datasets covering 19 years of investment funds activities. Our experimental results show that our proposed approach outperforms significantly typical DNN-based and statistical models at forecasting their 21-day price trajectory.