亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-objective optimization is a common problem in practical applications, and multi-objective evolutionary algorithm (MOEA) is considered as one of the effective methods to solve these problems. However, their randomness sometimes prevents algorithms from rapidly converging to global optimization, and the design of their genetic operators often requires complicated manual tuning. To overcome this challenge, this study proposes a new framework that combines a large language model (LLM) with traditional evolutionary algorithms to enhance the algorithm's search capability and generalization performance.In our framework, we employ adaptive and hybrid mechanisms to integrate the LLM with the MOEA, thereby accelerating algorithmic convergence. Specifically, we leverage an auxiliary evaluation function and automated prompt construction within the adaptive mechanism to flexibly adjust the utilization of the LLM, generating high-quality solutions that are further refined and optimized through genetic operators.Concurrently, the hybrid mechanism aims to minimize interaction costs with the LLM as much as possible.

相關內容

We consider the problem of designing typed concurrent calculi with non-deterministic choice in which types leverage linearity for controlling resources, thereby ensuring strong correctness properties for processes. This problem is constrained by the delicate tension between non-determinism and linearity. Prior work developed a session-typed {\pi}-calculus with standard non-deterministic choice; well-typed processes enjoy type preservation and deadlock-freedom. Central to this typed calculus is a lazy semantics that gradually discards branches in choices. This lazy semantics, however, is complex: various technical elements are needed to describe the non-deterministic behavior of typed processes. This paper develops an entirely new approach, based on an eager semantics, which more directly represents choices and commitment. We present a {\pi}-calculus in which non-deterministic choices are governed by this eager semantics and session types. We establish its key correctness properties, including deadlock-freedom, and demonstrate its expressivity by correctly translating a typed resource {\lambda}-calculus.

Binary code similarity detection is an important problem with applications in areas such as malware analysis, vulnerability research and license violation detection. This paper proposes a novel graph neural network architecture combined with a novel graph data representation called call graphlets. A call graphlet encodes the neighborhood around each function in a binary executable, capturing the local and global context through a series of statistical features. A specialized graph neural network model operates on this graph representation, learning to map it to a feature vector that encodes semantic binary code similarities using deep-metric learning. The proposed approach is evaluated across five distinct datasets covering different architectures, compiler tool chains, and optimization levels. Experimental results show that the combination of call graphlets and the novel graph neural network architecture achieves comparable or state-of-the-art performance compared to baseline techniques across cross-architecture, mono-architecture and zero shot tasks. In addition, our proposed approach also performs well when evaluated against an out-of-domain function inlining task. The work provides a general and effective graph neural network-based solution for conducting binary code similarity detection.

Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at //github.com/Wang-ML-Lab/variational-imbalanced-regression.

Text emotion detection constitutes a crucial foundation for advancing artificial intelligence from basic comprehension to the exploration of emotional reasoning. Most existing emotion detection datasets rely on manual annotations, which are associated with high costs, substantial subjectivity, and severe label imbalances. This is particularly evident in the inadequate annotation of micro-emotions and the absence of emotional intensity representation, which fail to capture the rich emotions embedded in sentences and adversely affect the quality of downstream task completion. By proposing an all-labels and training-set label regression method, we map label values to energy intensity levels, thereby fully leveraging the learning capabilities of machine models and the interdependencies among labels to uncover multiple emotions within samples. This led to the establishment of the Emotion Quantization Network (EQN) framework for micro-emotion detection and annotation. Using five commonly employed sentiment datasets, we conducted comparative experiments with various models, validating the broad applicability of our framework within NLP machine learning models. Based on the EQN framework, emotion detection and annotation are conducted on the GoEmotions dataset. A comprehensive comparison with the results from Google literature demonstrates that the EQN framework possesses a high capability for automatic detection and annotation of micro-emotions. The EQN framework is the first to achieve automatic micro-emotion annotation with energy-level scores, providing strong support for further emotion detection analysis and the quantitative research of emotion computing.

Regression discontinuity design (RDD) is widely adopted for causal inference under intervention determined by a continuous variable. While one is interested in treatment effect heterogeneity by subgroups in many applications, RDD typically suffers from small subgroup-wise sample sizes, which makes the estimation results highly instable. To solve this issue, we introduce hierarchical RDD (HRDD), a hierarchical Bayes approach for pursuing treatment effect heterogeneity in RDD. A key feature of HRDD is to employ a pseudo-model based on a loss function to estimate subgroup-level parameters of treatment effects under RDD, and assign a hierarchical prior distribution to ''borrow strength'' from other subgroups. The posterior computation can be easily done by a simple Gibbs sampling, and the optimal bandwidth can be automatically selected by the Hyv\"{a}rinen scores for unnormalized models. We demonstrate the proposed HRDD through simulation and real data analysis, and show that HRDD provides much more stable point and interval estimation than separately applying the standard RDD method to each subgroup.

Sensing-assisted communication is critical to enhance the system efficiency in integrated sensing and communication (ISAC) systems. However, most existing literature focuses on large-scale channel sensing, without considering the impacts of small-scale channel aging. In this paper, we investigate a dual-scale channel estimation framework for sensing-assisted communication, where both large-scale channel sensing and small-scale channel aging are considered. By modeling the channel aging effect with block fading and incorporating CRB (Cram\'er-Rao bound)-based sensing errors, we optimize both the time duration of large-scale detection and the frequency of small-scale update within each subframe to maximize the achievable rate while satisfying sensing requirements. Since the formulated optimization problem is non-convex, we propose a two-dimensional search-based optimization algorithm to obtain the optimal solution. Simulation results demonstrate the superiority of our proposed optimal design over three counterparts.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司