Proper citation is of great importance in academic writing for it enables knowledge accumulation and maintains academic integrity. However, citing properly is not an easy task. For published scientific entities, the ever-growing academic publications and over-familiarity of terms easily lead to missing citations. To deal with this situation, we design a special method Citation Recommendation for Published Scientific Entity (CRPSE) based on the cooccurrences between published scientific entities and in-text citations in the same sentences from previous researchers. Experimental outcomes show the effectiveness of our method in recommending the source papers for published scientific entities. We further conduct a statistical analysis on missing citations among papers published in prestigious computer science conferences in 2020. In the 12,278 papers collected, 475 published scientific entities of computer science and mathematics are found to have missing citations. Many entities mentioned without citations are found to be well-accepted research results. On a median basis, the papers proposing these published scientific entities with missing citations were published 8 years ago, which can be considered the time frame for a published scientific entity to develop into a well-accepted concept. For published scientific entities, we appeal for accurate and full citation of their source papers as required by academic standards.
Utilities of knowledge graphs (KGs) depend on their qualities. A KG that is of poor quality not only has little applicability but also leads to some unexpected errors. Therefore, quality evaluation for KGs is crucial and indispensable. Existing methods design many quality dimensions and calculate metrics in the corresponding dimensions based on details (i.e., raw data and graph structures) of KGs for evaluation. However, there are two major issues. On one hand, they consider the details as public information, which exposes the raw data and graph structures. These details are strictly confidential because they involve commercial privacy or others in practice. On the other hand, the existing methods focus on how much knowledge KGs have rather than KGs' practicability. To address the above problems, we propose a knowledge graph quality evaluation framework under incomplete information (QEII). The quality evaluation problem is transformed into an adversarial game, and the relative quality is evaluated according to the winner and loser. Participants of the game are KGs, and the adversarial gameplay is to question and answer (Q&A). In the QEII, we generate and train a question model and an answer model for each KG. The question model of a KG first asks a certain number of questions to the other KG. Then it evaluates the answers returned by the answer model of the other KG and outputs a percentage score. The relative quality is evaluated by the scores, which measures the ability to apply knowledge. Q&A messages are the only information that KGs exchange, without exposing any raw data and graph structure. Experimental results on two pairs of KGs demonstrate that, comparing with baselines, the QEII realizes a reasonable quality evaluation from the perspective of third-party evaluators under incomplete information.
The number of scientific publications continues to rise exponentially, especially in Computer Science (CS). However, current solutions to analyze those publications restrict access behind a paywall, offer no features for visual analysis, limit access to their data, only focus on niches or sub-fields, and/or are not flexible and modular enough to be transferred to other datasets. In this thesis, we conduct a scientometric analysis to uncover the implicit patterns hidden in CS metadata and to determine the state of CS research. Specifically, we investigate trends of the quantity, impact, and topics for authors, venues, document types (conferences vs. journals), and fields of study (compared to, e.g., medicine). To achieve this we introduce the CS-Insights system, an interactive web application to analyze CS publications with various dashboards, filters, and visualizations. The data underlying this system is the DBLP Discovery Dataset (D3), which contains metadata from 5 million CS publications. Both D3 and CS-Insights are open-access, and CS-Insights can be easily adapted to other datasets in the future. The most interesting findings of our scientometric analysis include that i) there has been a stark increase in publications, authors, and venues in the last two decades, ii) many authors only recently joined the field, iii) the most cited authors and venues focus on computer vision and pattern recognition, while the most productive prefer engineering-related topics, iv) the preference of researchers to publish in conferences over journals dwindles, v) on average, journal articles receive twice as many citations compared to conference papers, but the contrast is much smaller for the most cited conferences and journals, and vi) journals also get more citations in all other investigated fields of study, while only CS and engineering publish more in conferences than journals.
With a few exceptions, work in offline reinforcement learning (RL) has so far assumed that there is no confounding. In a classical regression setting, confounders introduce omitted variable bias and inhibit the identification of causal effects. In offline RL, they prevent the identification of a policy's value, and therefore make it impossible to perform policy improvement. Using conventional methods in offline RL in the presence of confounding can therefore not only lead to poor decisions and poor policies, but can also have disastrous effects in applications such as healthcare and education. We provide approaches for both off-policy evaluation (OPE) and local policy optimization in the settings of i.i.d. and global confounders. Theoretical and empirical results confirm the validity and viability of these methods.
We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.
Multivariate time series anomaly detection has been extensively studied under the semi-supervised setting, where a training dataset with all normal instances is required. However, preparing such a dataset is very laborious since each single data instance should be fully guaranteed to be normal. It is, therefore, desired to explore multivariate time series anomaly detection methods based on the dataset without any label knowledge. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for multivariate time series anomaly detection via dynamic graph and entity-aware normalizing flow, leaning only on a widely accepted hypothesis that abnormal instances exhibit sparse densities than the normal. However, the complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation, let alone to detect anomalies based on the estimated possibility distribution. To tackle these problems, we propose to learn the mutual and dynamic relations among entities via a graph structure learning model, which helps to model accurate distribution of multivariate time series. Moreover, taking account of distinct characteristics of the individual entities, an entity-aware normalizing flow is developed to describe each entity into a parameterized normal distribution, thereby producing fine-grained density estimation. Incorporating these two strategies, MTGFlow achieves superior anomaly detection performance. Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC\%. Codes will be released at //github.com/zqhang/Detecting-Multivariate-Time-Series-Anomalies-with-Zero-Known-Label.
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.
The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.