亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers how interactions with AI algorithms can boost human creative thought. We employ a psychological task that demonstrates limits on human creativity, namely semantic feature generation: given a concept name, respondents must list as many of its features as possible. Human participants typically produce only a fraction of the features they know before getting "stuck." In experiments with humans and with a language AI (GPT-4) we contrast behavior in the standard task versus a variant in which participants can ask for algorithmically-generated hints. Algorithm choice is administered by a multi-armed bandit whose reward indicates whether the hint helped generating more features. Humans and the AI show similar benefits from hints, and remarkably, bandits learning from AI responses prefer the same prompting strategy as those learning from human behavior. The results suggest that strategies for boosting human creativity via computer interactions can be learned by bandits run on groups of simulated participants.

相關內容

Evidence Networks can enable Bayesian model comparison when state-of-the-art methods (e.g. nested sampling) fail and even when likelihoods or priors are intractable or unknown. Bayesian model comparison, i.e. the computation of Bayes factors or evidence ratios, can be cast as an optimization problem. Though the Bayesian interpretation of optimal classification is well-known, here we change perspective and present classes of loss functions that result in fast, amortized neural estimators that directly estimate convenient functions of the Bayes factor. This mitigates numerical inaccuracies associated with estimating individual model probabilities. We introduce the leaky parity-odd power (l-POP) transform, leading to the novel ``l-POP-Exponential'' loss function. We explore neural density estimation for data probability in different models, showing it to be less accurate and scalable than Evidence Networks. Multiple real-world and synthetic examples illustrate that Evidence Networks are explicitly independent of dimensionality of the parameter space and scale mildly with the complexity of the posterior probability density function. This simple yet powerful approach has broad implications for model inference tasks. As an application of Evidence Networks to real-world data we compute the Bayes factor for two models with gravitational lensing data of the Dark Energy Survey. We briefly discuss applications of our methods to other, related problems of model comparison and evaluation in implicit inference settings.

Learning from human feedback (LHF) -- and in particular learning from pairwise preferences -- has recently become a crucial ingredient in training large language models (LLMs), and has been the subject of much research. Most recent works frame it as a reinforcement learning problem, where a reward function is learned from pairwise preference data and the LLM is treated as a policy which is adapted to maximize the rewards, often under additional regularization constraints. We propose an alternative interpretation which centers on the generative process for pairwise preferences and treats LHF as a density estimation problem. We provide theoretical and empirical results showing that for a family of generative processes defined via preference behavior distribution equations, training a reward function on pairwise preferences effectively models an annotator's implicit preference distribution. Finally, we discuss and present findings on "annotator misspecification" -- failure cases where wrong modeling assumptions are made about annotator behavior, resulting in poorly-adapted models -- suggesting that approaches that learn from pairwise human preferences could have trouble learning from a population of annotators with diverse viewpoints.

We present a new perspective on bridging the generalization gap between biological and computer vision -- mimicking the human visual diet. While computer vision models rely on internet-scraped datasets, humans learn from limited 3D scenes under diverse real-world transformations with objects in natural context. Our results demonstrate that incorporating variations and contextual cues ubiquitous in the human visual training data (visual diet) significantly improves generalization to real-world transformations such as lighting, viewpoint, and material changes. This improvement also extends to generalizing from synthetic to real-world data -- all models trained with a human-like visual diet outperform specialized architectures by large margins when tested on natural image data. These experiments are enabled by our two key contributions: a novel dataset capturing scene context and diverse real-world transformations to mimic the human visual diet, and a transformer model tailored to leverage these aspects of the human visual diet. All data and source code can be accessed at //github.com/Spandan-Madan/human_visual_diet.

This paper aims to develop a semi-formal design space for Human-AI interactions, by building a set of interaction primitives which specify the communication between users and AI systems during their interaction. We show how these primitives can be combined into a set of interaction patterns which can provide an abstract specification for exchanging messages between humans and AI/ML models to carry out purposeful interactions. The motivation behind this is twofold: firstly, to provide a compact generalisation of existing practices, that highlights the similarities and differences between systems in terms of their interaction behaviours; and secondly, to support the creation of new systems, in particular by opening the space of possibilities for interactions with models. We present a short literature review on frameworks, guidelines and taxonomies related to the design and implementation of HAI interactions, including human-in-the-loop, explainable AI, as well as hybrid intelligence and collaborative learning approaches. From the literature review, we define a vocabulary for describing information exchanges in terms of providing and requesting particular model-specific data types. Based on this vocabulary, a message passing model for interactions between humans and models is presented, which we demonstrate can account for existing systems and approaches. Finally, we build this into design patterns as mid-level constructs that capture common interactional structures. We discuss how this approach can be used towards a design space for Human-AI interactions that creates new possibilities for designs as well as keeping track of implementation issues and concerns.

In this paper, we propose R\'enyi information generating function (RIGF) and discuss its various properties. The relation between the RIGF and Shannon entropy of order q > 0 is established. Several bounds are obtained. The RIGF of escort distribution is derived. Furthermore, we introduce R\'enyi divergence information generating function (RDIGF) and show its effect under monotone transformations. Finally, we propose Jensen-R\'enyi information generating function (JRIGF) and introduce its several properties.

This study introduces a novel methodology for modelling patient emotions from online patient experience narratives. We employed metadata network topic modelling to analyse patient-reported experiences from Care Opinion, revealing key emotional themes linked to patient-caregiver interactions and clinical outcomes. We develop a probabilistic, context-specific emotion recommender system capable of predicting both multilabel emotions and binary sentiments using a naive Bayes classifier using contextually meaningful topics as predictors. The superior performance of our predicted emotions under this model compared to baseline models was assessed using the information retrieval metrics nDCG and Q-measure, and our predicted sentiments achieved an F1 score of 0.921, significantly outperforming standard sentiment lexicons. This method offers a transparent, cost-effective way to understand patient feedback, enhancing traditional collection methods and informing individualised patient care. Our findings are accessible via an R package and interactive dashboard, providing valuable tools for healthcare researchers and practitioners.

In this work, we introduce Regularity Structures B-series which are used for describing solutions of singular stochastic partial differential equations (SPDEs). We define composition and substitutions of these B-series and as in the context of B-series for ordinary differential equations, these operations can be rewritten via products and Hopf algebras which have been used for building up renormalised models. These models provide a suitable topology for solving singular SPDEs. This new construction sheds a new light on these products and open interesting perspectives for the study of singular SPDEs in connection with B-series.

Audio scene cartography for real or simulated stereo recordings is presented. This audio scene analysis is performed doing successively: a perceptive 10-subbands analysis, calculation of temporal laws for relative delays and gains between both channels of each subband using a short-time cons\-tant scene assumption and channels inter-correlation which permit to follow a mobile source in its moves, calculation of global and subbands histograms whose peaks give the incidence information for fixed sources. Audio scenes composed of 2 to 4 fixed sources or with a fixed source and a mobile one have been already successfully tested. Further extensions and applications will be discussed. Audio illustrations of audio scenes, subband analysis and demonstration of real-time stereo recording simulations will be given.Paper 6340 presented at the 118th Convention of the Audio Engineering Society, Barcelona, 2005

In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司