亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite our best efforts, deep learning models remain highly vulnerable to even tiny adversarial perturbations applied to the inputs. The ability to extract information from solely the output of a machine learning model to craft adversarial perturbations to black-box models is a practical threat against real-world systems, such as autonomous cars or machine learning models exposed as a service (MLaaS). Of particular interest are sparse attacks. The realization of sparse attacks in black-box models demonstrates that machine learning models are more vulnerable than we believe. Because these attacks aim to minimize the number of perturbed pixels measured by l_0 norm-required to mislead a model by solely observing the decision (the predicted label) returned to a model query; the so-called decision-based attack setting. But, such an attack leads to an NP-hard optimization problem. We develop an evolution-based algorithm-SparseEvo-for the problem and evaluate against both convolutional deep neural networks and vision transformers. Notably, vision transformers are yet to be investigated under a decision-based attack setting. SparseEvo requires significantly fewer model queries than the state-of-the-art sparse attack Pointwise for both untargeted and targeted attacks. The attack algorithm, although conceptually simple, is also competitive with only a limited query budget against the state-of-the-art gradient-based whitebox attacks in standard computer vision tasks such as ImageNet. Importantly, the query efficient SparseEvo, along with decision-based attacks, in general, raise new questions regarding the safety of deployed systems and poses new directions to study and understand the robustness of machine learning models.

相關內容

Recent work in open-domain question answering (ODQA) has shown that adversarial poisoning of the search collection can cause large drops in accuracy for production systems. However, little to no work has proposed methods to defend against these attacks. To do so, we rely on the intuition that redundant information often exists in large corpora. To find it, we introduce a method that uses query augmentation to search for a diverse set of passages that could answer the original question but are less likely to have been poisoned. We integrate these new passages into the model through the design of a novel confidence method, comparing the predicted answer to its appearance in the retrieved contexts (what we call \textit{Confidence from Answer Redundancy}, i.e. CAR). Together these methods allow for a simple but effective way to defend against poisoning attacks that provides gains of nearly 20\% exact match across varying levels of data poisoning/knowledge conflicts.

Adversarial attacks pose a significant threat to the security and safety of deep neural networks being applied to modern applications. More specifically, in computer vision-based tasks, experts can use the knowledge of model architecture to create adversarial samples imperceptible to the human eye. These attacks can lead to security problems in popular applications such as self-driving cars, face recognition, etc. Hence, building networks which are robust to such attacks is highly desirable and essential. Among the various methods present in literature, defensive distillation has shown promise in recent years. Using knowledge distillation, researchers have been able to create models robust against some of those attacks. However, more attacks have been developed exposing weakness in defensive distillation. In this project, we derive inspiration from teacher assistant knowledge distillation and propose that introducing an assistant network can improve the robustness of the distilled model. Through a series of experiments, we evaluate the distilled models for different distillation temperatures in terms of accuracy, sensitivity, and robustness. Our experiments demonstrate that the proposed hypothesis can improve robustness in most cases. Additionally, we show that multi-step distillation can further improve robustness with very little impact on model accuracy.

As IoT devices are becoming widely deployed, there exist many threats to IoT-based systems due to their inherent vulnerabilities. One effective approach to improving IoT security is to deploy IoT honeypot systems, which can collect attack information and reveal the methods and strategies used by attackers. However, building high-interaction IoT honeypots is challenging due to the heterogeneity of IoT devices. Vulnerabilities in IoT devices typically depend on specific device types or firmware versions, which encourages attackers to perform pre-attack checks to gather device information before launching attacks. Moreover, conventional honeypots are easily detected because their replying logic differs from that of the IoT devices they try to mimic. To address these problems, we develop an adaptive high-interaction honeypot for IoT devices, called HoneyIoT. We first build a real device based attack trace collection system to learn how attackers interact with IoT devices. We then model the attack behavior through markov decision process and leverage reinforcement learning techniques to learn the best responses to engage attackers based on the attack trace. We also use differential analysis techniques to mutate response values in some fields to generate high-fidelity responses. HoneyIoT has been deployed on the public Internet. Experimental results show that HoneyIoT can effectively bypass the pre-attack checks and mislead the attackers into uploading malware. Furthermore, HoneyIoT is covert against widely used reconnaissance and honeypot detection tools.

In recent years, person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks. In this paper, we focus on the backdoor attack on deep ReID models. Existing backdoor attack methods follow an all-to-one or all-to-all attack scenario, where all the target classes in the test set have already been seen in the training set. However, ReID is a much more complex fine-grained open-set recognition problem, where the identities in the test set are not contained in the training set. Thus, previous backdoor attack methods for classification are not applicable for ReID. To ameliorate this issue, we propose a novel backdoor attack on deep ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA). Instead of learning fixed triggers for the target classes from the training set, DT-IBA can dynamically generate new triggers for any unknown identities. Specifically, an identity hashing network is proposed to first extract target identity information from a reference image, which is then injected into the benign images by image steganography. We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.

In this study, we propose a novel framework that utilizes deep learning (DL) and attention mechanisms to predict the radiographic progression of patellofemoral osteoarthritis (PFOA) over a period of seven years. This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study. PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays. An end-to-end DL method was developed for predicting PFOA progression based on imaging data in a 5-fold cross-validation setting. A set of baselines based on known risk factors were developed and analyzed using gradient boosting machine (GBM). Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score). Finally, we trained an ensemble model using both imaging and clinical data. Among the individual models, the performance of our deep convolutional neural network attention model achieved the best performance with an AUC of 0.856 and AP of 0.431; slightly outperforming the deep learning approach without attention (AUC=0.832, AP= 0.4) and the best performing reference GBM model (AUC=0.767, AP= 0.334). The inclusion of imaging data and clinical variables in an ensemble model allowed statistically more powerful prediction of PFOA progression (AUC = 0.865, AP=0.447), although the clinical significance of this minor performance gain remains unknown. This study demonstrated the potential of machine learning models to predict the progression of PFOA using imaging and clinical variables. These models could be used to identify patients who are at high risk of progression and prioritize them for new treatments. However, even though the accuracy of the models were excellent in this study using the MOST dataset, they should be still validated using external patient cohorts in the future.

Logic locking is a promising technique for protecting integrated circuit designs while outsourcing their fabrication. Recently, graph neural network (GNN)-based link prediction attacks have been developed which can successfully break all the multiplexer-based locking techniques that were expected to be learning-resilient. We present SimLL, a novel similarity-based locking technique which locks a design using multiplexers and shows robustness against the existing structure-exploiting oracle-less learning-based attacks. Aiming to confuse the machine learning (ML) models, SimLL introduces key-controlled multiplexers between logic gates or wires that exhibit high levels of topological and functional similarity. Empirical results show that SimLL can degrade the accuracy of existing ML-based attacks to approximately 50%, resulting in a negligible advantage over random guessing.

Robustness against image perturbations bounded by a $\ell_p$ ball have been well-studied in recent literature. Perturbations in the real-world, however, rarely exhibit the pixel independence that $\ell_p$ threat models assume. A recently proposed Wasserstein distance-bounded threat model is a promising alternative that limits the perturbation to pixel mass movements. We point out and rectify flaws in previous definition of the Wasserstein threat model and explore stronger attacks and defenses under our better-defined framework. Lastly, we discuss the inability of current Wasserstein-robust models in defending against perturbations seen in the real world. Our code and trained models are available at //github.com/edwardjhu/improved_wasserstein .

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

北京阿比特科技有限公司