亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs. Code, models and dataset available at: //github.com/mv-lab/nilut

相關內容

3D是(shi)英(ying)文(wen)“Three Dimensions”的(de)簡(jian)稱,中文(wen)是(shi)指(zhi)三維、三個維度(du)、三個坐(zuo)標,即有長、有寬、有高,換句話說,就是(shi)立體(ti)的(de),是(shi)相對于只(zhi)有長和寬的(de)平(ping)面(2D)而言。

The expansion of the Internet-of-Things (IoT) paradigm is inevitable, but vulnerabilities of IoT devices to malware incidents have become an increasing concern. Recent research has shown that the integration of Reinforcement Learning with Moving Target Defense (MTD) mechanisms can enhance cybersecurity in IoT devices. Nevertheless, the numerous new malware attacks and the time that agents take to learn and select effective MTD techniques make this approach impractical for real-world IoT scenarios. To tackle this issue, this work presents CyberForce, a framework that employs Federated Reinforcement Learning (FRL) to collectively and privately determine suitable MTD techniques for mitigating diverse zero-day attacks. CyberForce integrates device fingerprinting and anomaly detection to reward or penalize MTD mechanisms chosen by an FRL-based agent. The framework has been evaluated in a federation consisting of ten devices of a real IoT platform. A pool of experiments with six malware samples affecting the devices has demonstrated that CyberForce can precisely learn optimum MTD mitigation strategies. When all clients are affected by all attacks, the FRL agent exhibits high accuracy and reduced training time when compared to a centralized RL agent. In cases where different clients experience distinct attacks, the CyberForce clients gain benefits through the transfer of knowledge from other clients and similar attack behavior. Additionally, CyberForce showcases notable robustness against data poisoning attacks.

Recent text-to-image diffusion models have demonstrated an astonishing capacity to generate high-quality images. However, researchers mainly studied the way of synthesizing images with only text prompts. While some works have explored using other modalities as conditions, considerable paired data, e.g., box/mask-image pairs, and fine-tuning time are required for nurturing models. As such paired data is time-consuming and labor-intensive to acquire and restricted to a closed set, this potentially becomes the bottleneck for applications in an open world. This paper focuses on the simplest form of user-provided conditions, e.g., box or scribble. To mitigate the aforementioned problem, we propose a training-free method to control objects and contexts in the synthesized images adhering to the given spatial conditions. Specifically, three spatial constraints, i.e., Inner-Box, Outer-Box, and Corner Constraints, are designed and seamlessly integrated into the denoising step of diffusion models, requiring no additional training and massive annotated layout data. Extensive results show that the proposed constraints can control what and where to present in the images while retaining the ability of the Stable Diffusion model to synthesize with high fidelity and diverse concept coverage. The code is publicly available at //github.com/Sierkinhane/BoxDiff.

Ultrasound (US) imaging is better suited for intraoperative settings because it is real-time and more portable than other imaging techniques, such as mammography. However, US images are characterized by lower spatial resolution noise-like artifacts. This research aims to address these limitations by providing surgeons with mammogram-like image quality in real-time from noisy US images. Unlike previous approaches for improving US image quality that aim to reduce artifacts by treating them as (speckle noise), we recognize their value as informative wave interference pattern (WIP). To achieve this, we utilize the Stride software to numerically solve the forward model, generating ultrasound images from mammograms images by solving wave-equations. Additionally, we leverage the power of domain adaptation to enhance the realism of the simulated ultrasound images. Then, we utilize generative adversarial networks (GANs) to tackle the inverse problem of generating mammogram-quality images from ultrasound images. The resultant images have considerably more discernible details than the original US images.

Recently, learned image compression has achieved remarkable performance. The entropy model, which estimates the distribution of the latent representation, plays a crucial role in boosting rate-distortion performance. However, most entropy models only capture correlations in one dimension, while the latent representation contain channel-wise, local spatial, and global spatial correlations. To tackle this issue, we propose the Multi-Reference Entropy Model (MEM) and the advanced version, MEM$^+$. These models capture the different types of correlations present in latent representation. Specifically, We first divide the latent representation into slices. When decoding the current slice, we use previously decoded slices as context and employ the attention map of the previously decoded slice to predict global correlations in the current slice. To capture local contexts, we introduce two enhanced checkerboard context capturing techniques that avoids performance degradation. Based on MEM and MEM$^+$, we propose image compression models MLIC and MLIC$^+$. Extensive experimental evaluations demonstrate that our MLIC and MLIC$^+$ models achieve state-of-the-art performance, reducing BD-rate by $8.05\%$ and $11.39\%$ on the Kodak dataset compared to VTM-17.0 when measured in PSNR. Our code will be available at //github.com/JiangWeibeta/MLIC.

Video shakiness is an unpleasant distortion of User Generated Content (UGC) videos, which is usually caused by the unstable hold of cameras. In recent years, many video stabilization algorithms have been proposed, yet no specific and accurate metric enables comprehensively evaluating the stability of videos. Indeed, most existing quality assessment models evaluate video quality as a whole without specifically taking the subjective experience of video stability into consideration. Therefore, these models cannot measure the video stability explicitly and precisely when severe shakes are present. In addition, there is no large-scale video database in public that includes various degrees of shaky videos with the corresponding subjective scores available, which hinders the development of Video Quality Assessment for Stability (VQA-S). To this end, we build a new database named StableDB that contains 1,952 diversely-shaky UGC videos, where each video has a Mean Opinion Score (MOS) on the degree of video stability rated by 34 subjects. Moreover, we elaborately design a novel VQA-S model named StableVQA, which consists of three feature extractors to acquire the optical flow, semantic, and blur features respectively, and a regression layer to predict the final stability score. Extensive experiments demonstrate that the StableVQA achieves a higher correlation with subjective opinions than the existing VQA-S models and generic VQA models. The database and codes are available at //github.com/QMME/StableVQA.

The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司