亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we present a new H(div)-conforming unfitted finite element method for the mixed Poisson problem which is robust in the cut configuration and preserves conservation properties of body-fitted finite element methods. The key is to formulate the divergence-constraint on the active mesh, instead of the physical domain, in order to obtain robustness with respect to cut configurations without the need for a stabilization that pollutes the mass balance. This change in the formulation results in a slight inconsistency, but does not affect the accuracy of the flux variable. By applying post-processings for the scalar variable, in virtue of classical local post-processings in body-fitted methods, we retain optimal convergence rates for both variables and even the superconvergence after post-processing of the scalar variable. We present the method and perform a rigorous a-priori error analysis of the method and discuss several variants and extensions. Numerical experiments confirm the theoretical results.

相關內容

Linear mixed models are commonly used in analyzing stepped-wedge cluster randomized trials (SW-CRTs). A key consideration for analyzing a SW-CRT is accounting for the potentially complex correlation structure, which can be achieved by specifying a random effects structure. Common random effects structures for a SW-CRT include random intercept, random cluster-by-period, and discrete-time decay. Recently, more complex structures, such as the random intervention structure, have been proposed. In practice, specifying appropriate random effects can be challenging. Robust variance estimators (RVE) may be applied to linear mixed models to provide consistent estimators of standard errors of fixed effect parameters in the presence of random-effects misspecification. However, there has been no empirical investigation of RVE for SW-CRT. In this paper, we first review five RVEs (both standard and small-sample bias-corrected RVEs) that are available for linear mixed models. We then describe a comprehensive simulation study to examine the performance of these RVEs for SW-CRTs with a continuous outcome under different data generators. For each data generator, we investigate whether the use of a RVE with either the random intercept model or the random cluster-by-period model is sufficient to provide valid statistical inference for fixed effect parameters, when these working models are subject to misspecification. Our results indicate that the random intercept and random cluster-by-period models with RVEs performed similarly. The CR3 RVE estimator, coupled with the number of clusters minus two degrees of freedom correction, consistently gave the best coverage results, but could be slightly anti-conservative when the number of clusters was below 16. We summarize the implications of our results for linear mixed model analysis of SW-CRTs in practice.

This paper introduces the Scaled Coordinate Transformation Boundary Element Method (SCTBEM), a novel boundary-type method for solving 3D potential problems. To address the challenges of applying the Boundary Element Method (BEM) to complex problems, it is common practice to use the fundamental solution corresponding to the partial governing equation operator to establish the integral equation. However, this approach introduces domain integral, which may jeopardize the dimensionality reduction advantages of BEM. To preserve the benefits of dimensionality reduction, this paper proposes a novel domain integral transformation method known as the Scaled Coordinate Transformation (SCT). The SCT is purely a mathematical operation that does not rely on particular solution of operators, which requires only discretization on the structure's surface while remaining analytical in the radial direction. An even better novelty is that the lower-order singularity can be eliminated by coordinate translation technique. To facilitate the wider adoption of BEM, the authors present 99-line MATLAB code. Numerical results confirm that the SCTBEM exhibits high numerical accuracy even when dealing with complex model.

In this paper, we study the problem of estimating the autocovariance sequence resulting from a reversible Markov chain. A motivating application for studying this problem is the estimation of the asymptotic variance in central limit theorems for Markov chains. We propose a novel shape-constrained estimator of the autocovariance sequence, which is based on the key observation that the representability of the autocovariance sequence as a moment sequence imposes certain shape constraints. We examine the theoretical properties of the proposed estimator and provide strong consistency guarantees for our estimator. In particular, for geometrically ergodic reversible Markov chains, we show that our estimator is strongly consistent for the true autocovariance sequence with respect to an $\ell_2$ distance, and that our estimator leads to strongly consistent estimates of the asymptotic variance. Finally, we perform empirical studies to illustrate the theoretical properties of the proposed estimator as well as to demonstrate the effectiveness of our estimator in comparison with other current state-of-the-art methods for Markov chain Monte Carlo variance estimation, including batch means, spectral variance estimators, and the initial convex sequence estimator.

We present the full approximation scheme constraint decomposition (FASCD) multilevel method for solving variational inequalities (VIs). FASCD is a common extension of both the full approximation scheme (FAS) multigrid technique for nonlinear partial differential equations, due to A.~Brandt, and the constraint decomposition (CD) method introduced by X.-C.~Tai for VIs arising in optimization. We extend the CD idea by exploiting the telescoping nature of certain function space subset decompositions arising from multilevel mesh hierarchies. When a reduced-space (active set) Newton method is applied as a smoother, with work proportional to the number of unknowns on a given mesh level, FASCD V-cycles exhibit nearly mesh-independent convergence rates, and full multigrid cycles are optimal solvers. The example problems include differential operators which are symmetric linear, nonsymmetric linear, and nonlinear, in unilateral and bilateral VI problems.

In this paper, we develop an efficient spectral-Galerkin-type search extension method (SGSEM) for finding multiple solutions to semilinear elliptic boundary value problems. This method constructs effective initial data for multiple solutions based on the linear combinations of some eigenfunctions of the corresponding linear eigenvalue problem, and thus takes full advantage of the traditional search extension method in constructing initials for multiple solutions. Meanwhile, it possesses a low computational cost and high accuracy due to the employment of an interpolated coefficient Legendre-Galerkin spectral discretization. By applying the Schauder's fixed point theorem and other technical strategies, the existence and spectral convergence of the numerical solution corresponding to a specified true solution are rigorously proved. In addition, the uniqueness of the numerical solution in a sufficiently small neighborhood of each specified true solution is strictly verified. Numerical results demonstrate the feasibility and efficiency of our algorithm and present different types of multiple solutions.

"Non-Malleable Randomness Encoder"(NMRE) was introduced by Kanukurthi, Obbattu, and Sekar~[KOS18] as a useful cryptographic primitive helpful in the construction of non-malleable codes. To the best of our knowledge, their construction is not known to be quantum secure. We provide a construction of a first rate-$1/2$, $2$-split, quantum secure NMRE and use this in a black-box manner, to construct for the first time the following: 1) rate $1/11$, $3$-split, quantum non-malleable code, 2) rate $1/3$, $3$-split, quantum secure non-malleable code, 3) rate $1/5$, $2$-split, average case quantum secure non-malleable code.

In this work we present a new WENO b-spline based quasi-interpolation algorithm. The novelty of this construction resides in the application of the WENO weights to the b-spline functions, that are a partition of unity, instead to the coefficients that multiply the b-spline functions of the spline. The result obtained conserves the smoothness of the original spline and presents adaption to discontinuities in the function. Another new idea that we introduce in this work is the use of different base weight functions from those proposed in classical WENO algorithms. Apart from introducing the construction of the new algorithms, we present theoretical results regarding the order of accuracy obtained at smooth zones and close to the discontinuity, as well as theoretical considerations about how to design the new weight functions. Through a tensor product strategy, we extend our results to several dimensions. In order to check the theoretical results obtained, we present an extended battery of numerical experiments in one, two and tree dimensions that support our conclussions.

We propose a matrix-free parallel two-level-deflation preconditioner combined with the Complex Shifted Laplacian preconditioner(CSLP) for the two-dimensional Helmholtz problems. The Helmholtz equation is widely studied in seismic exploration, antennas, and medical imaging. It is one of the hardest problems to solve both in terms of accuracy and convergence, due to scalability issues of the numerical solvers. Motivated by the observation that for large wavenumbers, the eigenvalues of the CSLP-preconditioned system shift towards zero, deflation with multigrid vectors, and further high-order vectors were incorporated to obtain wave-number-independent convergence. For large-scale applications, high-performance parallel scalable methods are also indispensable. In our method, we consider the preconditioned Krylov subspace methods for solving the linear system obtained from finite-difference discretization. The CSLP preconditioner is approximated by one parallel geometric multigrid V-cycle. For the two-level deflation, the matrix-free Galerkin coarsening as well as high-order re-discretization approaches on the coarse grid are studied. The results of matrix-vector multiplications in Krylov subspace methods and the interpolation/restriction operators are implemented based on the finite-difference grids without constructing any coefficient matrix. These adjustments lead to direct improvements in terms of memory consumption. Numerical experiments of model problems show that wavenumber independence has been obtained for medium wavenumbers. The matrix-free parallel framework shows satisfactory weak and strong parallel scalability.

The direct deep learning simulation for multi-scale problems remains a challenging issue. In this work, a novel higher-order multi-scale deep Ritz method (HOMS-DRM) is developed for thermal transfer equation of authentic composite materials with highly oscillatory and discontinuous coefficients. In this novel HOMS-DRM, higher-order multi-scale analysis and modeling are first employed to overcome limitations of prohibitive computation and Frequency Principle when direct deep learning simulation. Then, improved deep Ritz method are designed to high-accuracy and mesh-free simulation for macroscopic homogenized equation without multi-scale property and microscopic lower-order and higher-order cell problems with highly discontinuous coefficients. Moreover, the theoretical convergence of the proposed HOMS-DRM is rigorously demonstrated under appropriate assumptions. Finally, extensive numerical experiments are presented to show the computational accuracy of the proposed HOMS-DRM. This study offers a robust and high-accuracy multi-scale deep learning framework that enables the effective simulation and analysis of multi-scale problems of authentic composite materials.

Whisper is a recent Automatic Speech Recognition (ASR) model displaying impressive robustness to both out-of-distribution inputs and random noise. In this work, we show that this robustness does not carry over to adversarial noise. We show that we can degrade Whisper performance dramatically, or even transcribe a target sentence of our choice, by generating very small input perturbations with Signal Noise Ratio of 35-45dB. We also show that by fooling the Whisper language detector we can very easily degrade the performance of multilingual models. These vulnerabilities of a widely popular open-source model have practical security implications and emphasize the need for adversarially robust ASR.

北京阿比特科技有限公司