亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only obtain limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., BS mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter design for cooperative cell-free ISAC networks, where multi-base stations (BSs) cooperatively serve communication users and detect targets. We aim to maximize the sum of sensing signal-to-interference-plus-noise ratio (SINR) under the communication SINR requirements, total power budget, and constraints on the numbers of transmitters and receivers. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve this non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of our proposed joint design algorithms.

相關內容

In this paper, a hybrid non-orthogonal multiple access (NOMA) framework for the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) enhanced cell-edge communication is investigated. Specifically, one transmitted user and one reflected user are paired as one NOMA-pair, while multiple NOMA-pairs are served via time division multiple access (TDMA). The objective is to maximize the minimum downlink rate by jointly optimizing the user pairing, decoding order, passive beamforming, power and time allocation. A novel two-layer iterative algorithm is proposed to solve the highly coupled problem. Simulation results show that: 1) the proposed framework outperforms the conventional reflecting-only-RIS-based and the OMA-based frameworks; 2) the beamforming design and power allocation dominate the achieved performance; 3) increasing the number of passive elements and shortening the distance between BS and STAR-RIS are two effective ways to further improve the performance.

Intelligent reflecting surfaces (IRSs), active and/or passive, can be densely deployed in complex environments to significantly enhance wireless network coverage for both wireless information transfer (WIT) and wireless power transfer (WPT). In this letter, we study the downlink WIT/WPT from a multi-antenna base station to a single-antenna user over a multi-active/passive IRS (AIRS/PIRS)-enabled wireless link. In particular, we aim to optimize the location of the AIRS with those of the other PIRSs being fixed to maximize the received signal-to-noise ratio (SNR) and signal power at the user in the cases of WIT and WPT, respectively. We derive the optimal solutions for these two cases in closed-form, which reveals that the optimal AIRS deployment is generally different for WIT versus WPT. Furthermore, both analytical and numerical results are provided to show the conditions under which the proposed AIRS deployment strategy yields superior performance to other baseline deployment strategies as well as the conventional all- PIRS enabled WIT/WPT.

We consider a class of pursuit-evasion differential games in which the evader has continuous access to the pursuer's location, but not vice-versa. There is an immobile sensor (e.g., a ground radar station) that can sense the evader's location and communicate that information intermittently to the pursuer. Transmitting the information from the sensor to the pursuer is costly and only a finite number of transmissions can happen throughout the entire game. The outcome of the game is determined by the control strategies of the players and the communication strategy between the sensor and the pursuer. We obtain the (Nash) equilibrium control strategies for both the players as well as the optimal communication strategy between the static sensor and the pursuer. We discuss a dilemma for the evader that emerges in this game. We also discuss the emergence of implicit communication where the absence of communication from the sensor can also convey some actionable information to the pursuer.

To boost the secrecy rate (SR) of the conventional directional modulation (DM) network and overcome the double fading effect of the cascaded channels of passive intelligent reflecting surface (IRS), a novel active IRS-assisted DM system is investigated in this paper. Aiming to maximize the SR, two power allocation (PA) strategies, called maximizing SR based on fractional programming (FP) (Max-SR-FP) and maximizing SR based on derivative operation (DO) (Max-SR-DO), are proposed by jointly designing the PA factors, beamforming vector, and phase shift matrix of IRS, subject to the power constraint at IRS. The former with higher performance employs the FP and successive convex approximation (SCA) algorithms to design the confidential message PA factor and the total PA factor at the base station, and the SCA algorithm is also utilized to design the beamforming vector and the phase shift matrix of the IRS. The latter with lower complexity adopts the DO, and equal amplitude reflecting (EAR) and general power iterative (GPI) methods to solve them, respectively. The simulation results show that compared with the benchmark PA schemes, both the proposed PA schemes achieve a significant SR performance improvement. Moreover, the SR gap between two proposed schemes decreases gradually with the increases of the number of IRS phase shift element.

We study joint downlink-uplink beamforming design for wireless federated learning (FL) with a multi-antenna base station. Considering analog transmission over noisy channels and uplink over-the-air aggregation, we derive the global model update expression over communication rounds. We then obtain an upper bound on the expected global loss function, capturing the downlink and uplink beamforming and receiver noise effect. We propose a low-complexity joint beamforming algorithm to minimize this upper bound, which employs alternating optimization to breakdown the problem into three subproblems, each solved via closed-form gradient updates. Simulation under practical wireless system setup shows that our proposed joint beamforming design solution substantially outperforms the conventional separate-link design approach and nearly attains the performance of ideal FL with error-free communication links.

To support the newly introduced multimedia services with ultra-low latency and extensive computation requirements, resource-constrained end user devices should utilize the ubiquitous computing resources available at network edge for augmenting on-board (local) processing with edge computing. In this regard, the capability of cell-free massive MIMO to provide reliable access links by guaranteeing uniform quality of service without cell edge can be exploited for seamless parallel processing. Taking this into account, we consider a cell-free massive MIMO-enabled mobile edge network to meet the stringent requirements of the advanced services. For the considered mobile edge network, we formulate a joint communication and computing resource allocation (JCCRA) problem with the objective of minimizing energy consumption of the users while meeting the tight delay constraints. We then propose a fully distributed cooperative solution approach based on multiagent deep deterministic policy gradient (MADDPG) algorithm. The simulation results demonstrate that the performance of the proposed distributed approach has converged to that of a centralized deep deterministic policy gradient (DDPG)-based target benchmark, while alleviating the large overhead associated with the latter. Furthermore, it has been shown that our approach significantly outperforms heuristic baselines in terms of energy efficiency, roughly up to 5 times less total energy consumption.

This paper studies an intelligent reflecting surface (IRS)-aided multi-antenna simultaneous wireless information and power transfer (SWIPT) system where an $M$-antenna access point (AP) serves $K$ single-antenna information users (IUs) and $J$ single-antenna energy users (EUs) with the aid of an IRS with phase errors. We explicitly concentrate on overloaded scenarios where $K + J > M$ and $K \geq M$. Our goal is to maximize the minimum throughput among all the IUs by optimizing the allocation of resources (including time, transmit beamforming at the AP, and reflect beamforming at the IRS), while guaranteeing the minimum amount of harvested energy at each EU. Towards this goal, we propose two user grouping (UG) schemes, namely, the non-overlapping UG scheme and the overlapping UG scheme, where the difference lies in whether identical IUs can exist in multiple groups. Different IU groups are served in orthogonal time dimensions, while the IUs in the same group are served simultaneously with all the EUs via spatial multiplexing. The two problems corresponding to the two UG schemes are mixed-integer non-convex optimization problems and difficult to solve optimally. We propose efficient algorithms for these two problems based on the big-M formulation, the penalty method, the block coordinate descent, and the successive convex approximation. Simulation results show that: 1) the non-robust counterparts of the proposed robust designs are unsuitable for practical IRS-aided SWIPT systems with phase errors since the energy harvesting constraints cannot be satisfied; 2) the proposed UG strategies can significantly improve the max-min throughput over the benchmark schemes without UG or adopting random UG; 3) the overlapping UG scheme performs much better than its non-overlapping counterpart when the absolute difference between $K$ and $M$ is small and the EH constraints are not stringent.

We study the convergence behavior of the celebrated temporal-difference (TD) learning algorithm. By looking at the algorithm through the lens of optimization, we first argue that TD can be viewed as an iterative optimization algorithm where the function to be minimized changes per iteration. By carefully investigating the divergence displayed by TD on a classical counter example, we identify two forces that determine the convergent or divergent behavior of the algorithm. We next formalize our discovery in the linear TD setting with quadratic loss and prove that convergence of TD hinges on the interplay between these two forces. We extend this optimization perspective to prove convergence of TD in a much broader setting than just linear approximation and squared loss. Our results provide a theoretical explanation for the successful application of TD in reinforcement learning.

This paper investigates an intelligent reflecting surface (IRS) enabled multiuser integrated sensing and communications (ISAC) system, which consists of one multi-antenna base station (BS), one IRS, multiple single-antenna communication users (CUs), and one target at the non-line-of-sight (NLoS) region of the BS. The IRS is deployed to not only assist the communication from the BS to the CUs, but also enable the BS's NLoS target sensing based on the echo signals from the BS-IRS-target-IRS-BS link. We consider two types of targets, namely the extended and point targets, for which the BS aims to estimate the complete target response matrix and the target direction-of-arrival (DoA) with respect to the IRS, respectively. To provide full degrees of freedom for sensing, we consider that the BS sends dedicated sensing signals in addition to the communication signals. Accordingly, we model two types of CU receivers, namely Type-I and Type-II CU receivers, which do not have and have the capability of canceling the interference from the sensing signals, respectively. Under each setup, we jointly optimize the transmit beamforming at the BS and the reflective beamforming at the IRS to minimize the Cram\'er-Rao bound (CRB) for target estimation, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at the CUs and the maximum transmit power constraint at the BS. We present efficient algorithms to solve the highly non-convex SINR-constrained CRB minimization problems, by using the techniques of alternating optimization, semi-definite relaxation, and successive convex approximation. Numerical results show that the proposed design achieves lower estimation CRB than other benchmark schemes, and the sensing signal interference cancellation at Type-II CU receivers is beneficial when the number of CUs is greater than one.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

北京阿比特科技有限公司