亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional multi-agent path planners typically compute an ensemble of paths while optimizing a single objective, such as path length. However, many applications may require multiple objectives, say fuel consumption and completion time, to be simultaneously optimized during planning and these criteria may not be readily compared and sometimes lie in competition with each other. Naively applying existing multi-objective search algorithms, such as multi-objective A* (MOA*), to multi-agent path finding may prove to be inefficient as the size of the space of possible solutions, i.e., the Pareto-optimal set, can grow exponentially with the number of agents (the dimension of the search space). This article presents an approach named Multi-Objective Conflict-Based Search (MO-CBS) that bypasses this so-called curse of dimensionality by leveraging prior Conflict-Based Search (CBS), a well-known algorithm for single-objective multi-agent path finding, and principles of dominance from multi-objective optimization literature. We also develop several variants of MO-CBS to further improve its performance. We prove that MO-CBS and its variants are able to compute the entire Pareto-optimal set. Numerical results show that MO-CBS outperforms both MOA* as well as MOM*, a recently developed state-of-the-art multi-objective multi-agent planner.

相關內容

We study fair allocation of indivisible items, where the items are furnished with a set of conflicts, and agents are not permitted to receive conflicting items. This kind of constraint captures, for example, participating in events that overlap in time, or taking on roles in the presence of conflicting interests. We demonstrate, both theoretically and experimentally, that fairness characterizations such as EF1, MMS and MNW still are applicable and useful under item conflicts. Among other existence, non-existence and computability results, we show that a $1/\Delta$-approximate MMS allocation for $n$ agents may be found in polynomial time when $n>\Delta>2$, for any conflict graph with maximum degree $\Delta$, and that, if $n > \Delta$, a 1/3-approximate MMS allocation always exists.

{We investigate the communications design in a multiagent system (MAS) in which agents cooperate to maximize the averaged sum of discounted one-stage rewards of a collaborative task. Due to the limited communication rate between the agents, each agent should efficiently represent its local observation and communicate an abstract version of the observations to improve the collaborative task performance. We first show that this problem is equivalent to a form of rate-distortion problem which we call task-based information compression (TBIC). We then introduce the state-aggregation for information compression algorithm (SAIC) to solve the formulated TBIC problem. It is shown that SAIC is able to achieve near-optimal performance in terms of the achieved sum of discounted rewards. The proposed algorithm is applied to a rendezvous problem and its performance is compared with several benchmarks. Numerical experiments confirm the superiority of the proposed algorithm.

In this paper, we show several parameterized problems to be complete for the class XNLP: parameterized problems that can be solved with a non-deterministic algorithm that uses $f(k)\log n$ space and $f(k)n^c$ time, with $f$ a computable function, $n$ the input size, $k$ the parameter and $c$ a constant. The problems include Maximum Regular Induced Subgraph and Max Cut parameterized by linear clique-width, Capacitated (Red-Blue) Dominating Set parameterized by pathwidth, Odd Cycle Transversal parameterized by a new parameter we call logarithmic linear clique-width (defined as $k/\log n$ for an $n$-vertex graph of linear clique-width $k$), and Bipartite Bandwidth.

Parameter sharing, where each agent independently learns a policy with fully shared parameters between all policies, is a popular baseline method for multi-agent deep reinforcement learning. Unfortunately, since all agents share the same policy network, they cannot learn different policies or tasks. This issue has been circumvented experimentally by adding an agent-specific indicator signal to observations, which we term "agent indication." Agent indication is limited, however, in that without modification it does not allow parameter sharing to be applied to environments where the action spaces and/or observation spaces are heterogeneous. This work formalizes the notion of agent indication and proves that it enables convergence to optimal policies for the first time. Next, we formally introduce methods to extend parameter sharing to learning in heterogeneous observation and action spaces, and prove that these methods allow for convergence to optimal policies. Finally, we experimentally confirm that the methods we introduce function empirically, and conduct a wide array of experiments studying the empirical efficacy of many different agent indication schemes for graphical observation spaces.

As the heart of a search engine, the ranking system plays a crucial role in satisfying users' information demands. More recently, neural rankers fine-tuned from pre-trained language models (PLMs) establish state-of-the-art ranking effectiveness. However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system. In this work, we contribute a series of successfully applied techniques in tackling these exposed issues when deploying the state-of-the-art Chinese pre-trained language model, i.e., ERNIE, in the online search engine system. We first articulate a novel practice to cost-efficiently summarize the web document and contextualize the resultant summary content with the query using a cheap yet powerful Pyramid-ERNIE architecture. Then we endow an innovative paradigm to finely exploit the large-scale noisy and biased post-click behavioral data for relevance-oriented pre-training. We also propose a human-anchored fine-tuning strategy tailored for the online ranking system, aiming to stabilize the ranking signals across various online components. Extensive offline and online experimental results show that the proposed techniques significantly boost the search engine's performance.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司