The identification (ID) capacity region of the compound broadcast channel is determined under an average error criterion, where the sender has no channel state information. We give single-letter ID capacity formulas for discrete channels and MIMO Gaussian channels, under an average input constraint. The capacity theorems apply to general broadcast channels. This is in contrast to the transmission setting, where the capacity is only known for special cases, notably the degraded broadcast channel and the MIMO broadcast channel with private messages. Furthermore, the ID capacity region of the compound MIMO broadcast channel is in general larger than the transmission capacity region. This is a departure from the single-user behavior of ID, since the ID capacity of a single-user channel equals the transmission capacity.
We study broadcasting on multiple-access channels under adversarial packet injection. Leaky-bucket adversaries model packet injection. There is a fixed set of stations attached to a channel. Additional constrains on the model include bounds on the number of stations activated at a round, individual injection rates, and randomness in generating and injecting packets. Broadcast algorithms that we concentrate on are deterministic and distributed. We demonstrate that some broadcast algorithms designed for ad-hoc channels have bounded latency for wider ranges of injection rates when executed on channels with a fixed number of stations against adversaries that can activate at most one station per round. Individual injection rates are shown to impact latency, as compared to the model of general leaky bucket adversaries. Outcomes of experiments are given that compare the performance of broadcast algorithms against randomized adversaries. The experiments include randomized backoff algorithms.
Secure Message Transmission (SMT) is a two-party cryptographic protocol by which the sender can securely and reliably transmit messages to the receiver using multiple channels. An adversary can corrupt a subset of the channels and commit eavesdropping and tampering attacks over the channels. In this work, we introduce a game-theoretic security model for SMT in which adversaries have some preferences for protocol execution. We define rational "timid" adversaries who prefer to violate security requirements but do not prefer the tampering to be detected. First, we consider the basic setting where a single adversary attacks the protocol. We construct perfect SMT protocols against any rational adversary corrupting all but one of the channels. Since minority corruption is required in the traditional setting, our results demonstrate a way of circumventing the cryptographic impossibility results by a game-theoretic approach. Next, we study the setting in which all the channels can be corrupted by multiple adversaries who do not cooperate. Since we cannot hope for any security if a single adversary corrupts all the channels or multiple adversaries cooperate maliciously, the scenario can arise from a game-theoretic model. We also study the scenario in which both malicious and rational adversaries exist.
We study the problem of identifying the source of a stochastic diffusion process spreading on a graph based on the arrival times of the diffusion at a few queried nodes. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to identify $v^*$ by querying nodes $q \in V$ and being told the length of the shortest path between $q$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: non-adaptive, in which all query nodes must be decided in advance, and adaptive, in which each query can depend on the results of the previous ones. Both settings are motivated by an application of the problem to epidemic processes (where the source is called patient zero), which we discuss in detail. We characterize the query complexity when $G$ is an $n$-node path. In the non-adaptive setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the adaptive setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of source identification with time queries in a non-deterministic diffusion process.
This letter studies the ergodic mutual information (EMI) of keyhole multiple-input multiple-output (MIMO) channels having finite input signals. At first, the EMI of single-stream transmission is investigated depending on whether the channel state information at the transmitter (CSIT) is available or not. Then, the derived results are extended to the case of multi-stream transmission. For the sake of providing more system insights, asymptotic analyses are performed in the regime of high signal-to-noise ratio (SNR), which suggests that the high-SNR EMI converges to some constant with its rate of convergence (ROC) determined by the diversity order. All the results are validated by numerical simulations and are in excellent agreement.
The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is $-0.5$ times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and calculate the outage probability. Numerical results show that the modified CLT significantly outperforms previous methods in approximating the distribution of the MI and improves the accuracy for the outage probability evaluation.
Intelligent reflecting surface (IRS) has emerged as a promising technique to enhance wireless communication performance cost effectively. The existing literature has mainly considered IRS being deployed near user terminals to improve their performance. However, this approach may incur a high cost if IRSs need to be densely deployed in the network to cater to random user locations. To avoid such high deployment cost, in this paper we consider a new IRS aided wireless network architecture, where IRSs are deployed in the vicinity of each base station (BS) to assist in its communications with distributed users regardless of their locations. Besides significantly enhancing IRSs' signal coverage, this scheme helps reduce the IRS associated channel estimation overhead as compared to conventional user-side IRSs, by exploiting the nearly static BS-IRS channels over short distance. For this scheme, we propose a new two stage transmission protocol to achieve IRS channel estimation and reflection optimization for uplink data transmission efficiently. In addition, we propose effective methods for solving the user IRS association problem based on long term channel knowledge and the selected user IRS BS cascaded channel estimation problem. Finally, all IRSs' passive reflections are jointly optimized with the BS's multi-antenna receive combining to maximize the minimum achievable rate among all users for data transmission. Numerical results show that the proposed co site IRS empowered BS scheme can achieve significant performance gains over the conventional BS without co site IRS and existing schemes for IRS channel estimation and reflection optimization, thus enabling an appealing low cost and high performance BS design for future wireless networks.
This paper explores a family of generalized sweeping preconditionners for Helmholtz problems with non-overlapping checkerboard partition of the computational domain. The domain decomposition procedure relies on high-order transmission conditions and cross-point treatments, which cannot scale without an efficient preconditioning technique when the number of subdomains increases. With the proposed approach, existing sweeping preconditioners, such as the symmetric Gauss-Seidel and parallel double sweep preconditioners, can be applied to checkerboard partitions with different sweeping directions (e.g. horizontal and diagonal). Several directions can be combined thanks to the flexible version of GMRES, allowing for the rapid transfer of information in the different zones of the computational domain, then accelerating the convergence of the final iterative solution procedure. Several two-dimensional finite element results are proposed to study and to compare the sweeping preconditioners, and to illustrate the performance on cases of increasing complexity.
An N-of-1 trial is a multi-period crossover trial performed in a single individual, with a primary goal to estimate treatment effect on the individual instead of population-level mean responses. As in a conventional crossover trial, it is critical to understand carryover effects of the treatment in an N-of-1 trial, especially when no washout periods between treatment periods are instituted to reduce trial duration. To deal with this issue in situations where high volume of measurements is made during the study, we introduce a novel Bayesian distributed lag model that facilitates the estimation of carryover effects, while accounting for temporal correlations using an autoregressive model. Specifically, we propose a prior variance-covariance structure on the lag coefficients to address collinearity caused by the fact that treatment exposures are typically identical on successive days. A connection between the proposed Bayesian model and penalized regression is noted. Simulation results demonstrate that the proposed model substantially reduces the root mean squared error in the estimation of carryover effects and immediate effects when compared to other existing methods, while being comparable in the estimation of the total effects. We also apply the proposed method to assess the extent of carryover effects of light therapies in relieving depressive symptoms in cancer survivors.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.
Deep convolutional neural networks (CNNs) have demonstrated dominant performance in person re-identification (Re-ID). Existing CNN based methods utilize global average pooling (GAP) to aggregate intermediate convolutional features for Re-ID. However, this strategy only considers the first-order statistics of local features and treats local features at different locations equally important, leading to sub-optimal feature representation. To deal with these issues, we propose a novel \emph{weighted bilinear coding} (WBC) model for local feature aggregation in CNN networks to pursue more representative and discriminative feature representations. In specific, bilinear coding is used to encode the channel-wise feature correlations to capture richer feature interactions. Meanwhile, a weighting scheme is applied on the bilinear coding to adaptively adjust the weights of local features at different locations based on their importance in recognition, further improving the discriminability of feature aggregation. To handle the spatial misalignment issue, we use a salient part net to derive salient body parts, and apply the WBC model on each part. The final representation, formed by concatenating the WBC eoncoded features of each part, is both discriminative and resistant to spatial misalignment. Experiments on three benchmarks including Market-1501, DukeMTMC-reID and CUHK03 evidence the favorable performance of our method against other state-of-the-art methods.