亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sound event detection (SED) is essential for recognizing specific sounds and their temporal locations within acoustic signals. This becomes challenging particularly for on-device applications, where computational resources are limited. To address this issue, we introduce a novel framework referred to as dual knowledge distillation for developing efficient SED systems in this work. Our proposed dual knowledge distillation commences with temporal-averaging knowledge distillation (TAKD), utilizing a mean student model derived from the temporal averaging of the student model's parameters. This allows the student model to indirectly learn from a pre-trained teacher model, ensuring a stable knowledge distillation. Subsequently, we introduce embedding-enhanced feature distillation (EEFD), which involves incorporating an embedding distillation layer within the student model to bolster contextual learning. On DCASE 2023 Task 4A public evaluation dataset, our proposed SED system with dual knowledge distillation having merely one-third of the baseline model's parameters, demonstrates superior performance in terms of PSDS1 and PSDS2. This highlights the importance of proposed dual knowledge distillation for compact SED systems, which can be ideal for edge devices.

相關內容

User response prediction is essential in industrial recommendation systems, such as online display advertising. Among all the features in recommendation models, user behaviors are among the most critical. Many works have revealed that a user's behavior reflects her interest in the candidate item, owing to the semantic or temporal correlation between behaviors and the candidate. While the literature has individually examined each of these correlations, researchers have yet to analyze them in combination, that is, the semantic-temporal correlation. We empirically measure this correlation and observe intuitive yet robust patterns. We then examine several popular user interest models and find that, surprisingly, none of them learn such correlation well. To fill this gap, we propose a Temporal Interest Network (TIN) to capture the semantic-temporal correlation simultaneously between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic encoding, to represent behaviors and the target. Furthermore, we conduct explicit 4-way interaction by deploying target-aware attention and target-aware representation to capture both semantic and temporal correlation. We conduct comprehensive evaluations on two popular public datasets, and our proposed TIN outperforms the best-performing baselines by 0.43% and 0.29% on GAUC, respectively. During online A/B testing in Tencent's advertising platform, TIN achieves 1.65% cost lift and 1.93% GMV lift over the base model. It has been successfully deployed in production since October 2023, serving the WeChat Moments traffic. We have released our code at //github.com/zhouxy1003/TIN.

Speculative decoding has shown to be an effective method for lossless acceleration of large language models (LLMs) during inference. In each iteration, the algorithm first uses a smaller model to draft a block of tokens. The tokens are then verified by the large model in parallel and only a subset of tokens will be kept to guarantee that the final output follows the distribution of the large model. In all of the prior speculative decoding works, the draft verification is performed token-by-token independently. In this work, we propose a better draft verification algorithm that provides additional wall-clock speedup without incurring additional computation cost and draft tokens. We first formulate the draft verification step as a block-level optimal transport problem. The block-level formulation allows us to consider a wider range of draft verification algorithms and obtain a higher number of accepted tokens in expectation in one draft block. We propose a verification algorithm that achieves the optimal accepted length for the block-level transport problem. We empirically evaluate our proposed block-level verification algorithm in a wide range of tasks and datasets, and observe consistent improvements in wall-clock speedup when compared to token-level verification algorithm. To the best of our knowledge, our work is the first to establish improvement over speculative decoding through a better draft verification algorithm.

Recent efforts have augmented large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning, leading to a new class of language agents. While these agents have achieved substantial empirical success, we lack a systematic framework to organize existing agents and plan future developments. In this paper, we draw on the rich history of cognitive science and symbolic artificial intelligence to propose Cognitive Architectures for Language Agents (CoALA). CoALA describes a language agent with modular memory components, a structured action space to interact with internal memory and external environments, and a generalized decision-making process to choose actions. We use CoALA to retrospectively survey and organize a large body of recent work, and prospectively identify actionable directions towards more capable agents. Taken together, CoALA contextualizes today's language agents within the broader history of AI and outlines a path towards language-based general intelligence.

3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When trained with randomly initialized point clouds, 3DGS fails to maintain its ability to produce high-quality images, undergoing large performance drops of 4-5 dB in PSNR. Through extensive analysis of SfM initialization in the frequency domain and analysis of a 1D regression task with multiple 1D Gaussians, we propose a novel optimization strategy dubbed RAIN-GS (Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting), that successfully trains 3D Gaussians from random point clouds. We show the effectiveness of our strategy through quantitative and qualitative comparisons on multiple datasets, largely improving the performance in all settings. Our project page and code can be found at //ku-cvlab.github.io/RAIN-GS.

Many studies have identified particular features of artificial intelligences (AI), such as their autonomy and emotion expression, that affect the extent to which they are treated as subjects of moral consideration. However, there has not yet been a comparison of the relative importance of features as is necessary to design and understand increasingly capable, multi-faceted AI systems. We conducted an online conjoint experiment in which 1,163 participants evaluated descriptions of AIs that varied on these features. All 11 features increased how morally wrong participants considered it to harm the AIs. The largest effects were from human-like physical bodies and prosociality (i.e., emotion expression, emotion recognition, cooperation, and moral judgment). For human-computer interaction designers, the importance of prosociality suggests that, because AIs are often seen as threatening, the highest levels of moral consideration may only be granted if the AI has positive intentions.

Wildfire forecasting is notoriously hard due to the complex interplay of different factors such as weather conditions, vegetation types and human activities. Deep learning models show promise in dealing with this complexity by learning directly from data. However, to inform critical decision making, we argue that we need models that are right for the right reasons; that is, the implicit rules learned should be grounded by the underlying processes driving wildfires. In that direction, we propose integrating causality with Graph Neural Networks (GNNs) that explicitly model the causal mechanism among complex variables via graph learning. The causal adjacency matrix considers the synergistic effect among variables and removes the spurious links from highly correlated impacts. Our methodology's effectiveness is demonstrated through superior performance forecasting wildfire patterns in the European boreal and mediterranean biome. The gain is especially prominent in a highly imbalanced dataset, showcasing an enhanced robustness of the model to adapt to regime shifts in functional relationships. Furthermore, SHAP values from our trained model further enhance our understanding of the model's inner workings.

Collision detection is one of the most time-consuming operations during motion planning. Thus, there is an increasing interest in exploring machine learning techniques to speed up collision detection and sampling-based motion planning. A recent line of research focuses on utilizing neural signed distance functions of either the robot geometry or the swept volume of the robot motion. Building on this, we present a novel neural implicit swept volume model to continuously represent arbitrary motions parameterized by their start and goal configurations. This allows to quickly compute signed distances for any point in the task space to the robot motion. Further, we present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers. We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.

Although person or identity verification has been predominantly explored using individual modalities such as face and voice, audio-visual fusion has recently shown immense potential to outperform unimodal approaches. Audio and visual modalities are often expected to pose strong complementary relationships, which plays a crucial role in effective audio-visual fusion. However, they may not always strongly complement each other, they may also exhibit weak complementary relationships, resulting in poor audio-visual feature representations. In this paper, we propose a Dynamic Cross-Attention (DCA) model that can dynamically select the cross-attended or unattended features on the fly based on the strong or weak complementary relationships, respectively, across audio and visual modalities. In particular, a conditional gating layer is designed to evaluate the contribution of the cross-attention mechanism and choose cross-attended features only when they exhibit strong complementary relationships, otherwise unattended features. Extensive experiments are conducted on the Voxceleb1 dataset to demonstrate the robustness of the proposed model. Results indicate that the proposed model consistently improves the performance on multiple variants of cross-attention while outperforming the state-of-the-art methods.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

北京阿比特科技有限公司