亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.

相關內容

Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS testing approaches modify the controllable attributes of a simulated driving environment until the ADS misbehaves. In such approaches, environment instances in which the ADS is successful are discarded, despite the possibility that they could contain hidden driving conditions in which the ADS may misbehave. In this paper, we present GENBO (GENerator of BOundary state pairs), a novel test generator for ADS testing. GENBO mutates the driving conditions of the ego vehicle (position, velocity and orientation), collected in a failure-free environment instance, and efficiently generates challenging driving conditions at the behavior boundary (i.e., where the model starts to misbehave) in the same environment instance. We use such boundary conditions to augment the initial training dataset and retrain the DNN model under test. Our evaluation results show that the retrained model has, on average, up to 3x higher success rate on a separate set of evaluation tracks with respect to the original DNN model.

The landscape of software engineering is evolving rapidly amidst the digital transformation and the ascendancy of AI, leading to profound shifts in the role and responsibilities of software engineers. This evolution encompasses both immediate changes, such as the adoption of Language Model-based approaches in coding, and deeper shifts driven by the profound societal and environmental impacts of technology. Despite the urgency, there persists a lag in adapting to these evolving roles. By fostering ongoing discourse and reflection on Software Engineers role and responsibilities, this vision paper seeks to cultivate a new generation of software engineers equipped to navigate the complexities and ethical considerations inherent in their evolving profession.

NextG (5G and beyond) networks, through the increasing integration of cloud/edge computing technologies, are becoming highly distributed compute platforms ideally suited to host emerging resource-intensive and latency-sensitive applications (e.g., industrial automation, extended reality, distributed AI). The end-to-end orchestration of such demanding applications, which involves function/data placement, flow routing, and joint communication/computation/storage resource allocation, requires new models and algorithms able to capture: (i) their disaggregated microservice-based architecture, (ii) their complex processing graph structures, including multiple-input multiple-output processing stages, and (iii) the opportunities for efficiently sharing and replicating data streams that may be useful for multiple functions and/or end users. To this end, we first identify the technical gaps in existing literature that prevent efficiently addressing the optimal orchestration of emerging applications described by information-aware directed acyclic graphs (DAGs). We then leverage the recently proposed Cloud Network Flow optimization framework and a novel functionally-equivalent DAG-to-Forest graph transformation procedure to design IDAGO (Information-Aware DAG Orchestration), a polynomial-time multi-criteria approximation algorithm for the optimal orchestration of NextG media services over NextG compute-integrated networks.

Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.

Distributed deep neural networks (DNNs) have emerged as a key technique to reduce communication overhead without sacrificing performance in edge computing systems. Recently, entropy coding has been introduced to further reduce the communication overhead. The key idea is to train the distributed DNN jointly with an entropy model, which is used as side information during inference time to adaptively encode latent representations into bit streams with variable length. To the best of our knowledge, the resilience of entropy models is yet to be investigated. As such, in this paper we formulate and investigate the resilience of entropy models to intentional interference (e.g., adversarial attacks) and unintentional interference (e.g., weather changes and motion blur). Through an extensive experimental campaign with 3 different DNN architectures, 2 entropy models and 4 rate-distortion trade-off factors, we demonstrate that the entropy attacks can increase the communication overhead by up to 95%. By separating compression features in frequency and spatial domain, we propose a new defense mechanism that can reduce the transmission overhead of the attacked input by about 9% compared to unperturbed data, with only about 2% accuracy loss. Importantly, the proposed defense mechanism is a standalone approach which can be applied in conjunction with approaches such as adversarial training to further improve robustness. Code will be shared for reproducibility.

Efficient finetuning of vision-language models (VLMs) like CLIP for specific downstream tasks is gaining significant attention. Previous works primarily focus on prompt learning to adapt the CLIP into a variety of downstream tasks, however, suffering from task overfitting when finetuned on a small data set. In this paper, we introduce an orthogonal finetuning method for efficiently updating pretrained weights which enhances robustness and generalization, while a cross-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed \textbf{\textit{OrthCR}}. Specifically, trainable orthogonal matrices are injected seamlessly into the transformer architecture and enforced with orthogonality constraint using Cayley parameterization, benefiting from the norm-preserving property and thus leading to stable and faster convergence. To alleviate deviation from orthogonal constraint during training, a cross-regularization strategy is further employed with initial pretrained weights within a bypass manner. In addition, to enrich the sample diversity for downstream tasks, we first explore Cutout data augmentation to boost the efficient finetuning and comprehend how our approach improves the specific downstream performance and maintains the generalizability in the perspective of Orthogonality Learning. Beyond existing prompt learning techniques, we conduct extensive experiments to demonstrate that our method explicitly steers pretrained weight space to represent the task-specific knowledge and presents competitive generalizability under \textit{base-to-base/base-to-new}, \textit{cross-dataset transfer} and \textit{domain generalization} evaluations.

Wireless relays can effectively extend the transmission range of information. However, if relay technology is utilized unlawfully, it can amplify potential harm. Effectively surveilling illegitimate relay links poses a challenging problem. Unmanned aerial vehicles (UAVs) can proactively surveil wireless relay systems due to their flexible mobility. This work focuses on maximizing the eavesdropping rate (ER) of UAVs by jointly optimizing the trajectory and jamming power. To address this challenge, we propose a new iterative algorithm based on block coordinate descent and successive convex approximation technologies. Simulation results demonstrate that the proposed algorithm significantly enhances the ER through trajectory and jamming power optimization.

Path-based relational reasoning over knowledge graphs has become increasingly popular due to a variety of downstream applications such as question answering in dialogue systems, fact prediction, and recommender systems. In recent years, reinforcement learning (RL) has provided solutions that are more interpretable and explainable than other deep learning models. However, these solutions still face several challenges, including large action space for the RL agent and accurate representation of entity neighborhood structure. We address these problems by introducing a type-enhanced RL agent that uses the local neighborhood information for efficient path-based reasoning over knowledge graphs. Our solution uses graph neural network (GNN) for encoding the neighborhood information and utilizes entity types to prune the action space. Experiments on real-world dataset show that our method outperforms state-of-the-art RL methods and discovers more novel paths during the training procedure.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

北京阿比特科技有限公司