亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Policy gradient methods are a vital ingredient behind the success of modern reinforcement learning. Modern policy gradient methods, although successful, introduce a residual error in gradient estimation. In this work, we argue that this residual term is significant and correcting for it could potentially improve sample-complexity of reinforcement learning methods. To that end, we propose log density gradient to estimate the policy gradient, which corrects for this residual error term. Log density gradient method computes policy gradient by utilising the state-action discounted distributional formulation. We first present the equations needed to exactly find the log density gradient for a tabular Markov Decision Processes (MDPs). For more complex environments, we propose a temporal difference (TD) method that approximates log density gradient by utilizing backward on-policy samples. Since backward sampling from a Markov chain is highly restrictive we also propose a min-max optimization that can approximate log density gradient using just on-policy samples. We also prove uniqueness, and convergence under linear function approximation, for this min-max optimization. Finally, we show that the sample complexity of our min-max optimization to be of the order of $m^{-1/2}$, where $m$ is the number of on-policy samples. We also demonstrate a proof-of-concept for our log density gradient method on gridworld environment, and observe that our method is able to improve upon the classical policy gradient method by a clear margin, thus indicating a promising novel direction to develop reinforcement learning algorithms that require fewer samples.

相關內容

We address the problem of human-in-the-loop control for generating prosody in the context of text-to-speech synthesis. Controlling prosody is challenging because existing generative models lack an efficient interface through which users can modify the output quickly and precisely. To solve this, we introduce a novel framework whereby the user provides partial inputs and the generative model generates the missing features. We propose a model that is specifically designed to encode partial prosodic features and output complete audio. We show empirically that our model displays two essential qualities of a human-in-the-loop control mechanism: efficiency and robustness. With even a very small number of input values (~4), our model enables users to improve the quality of the output significantly in terms of listener preference (4:1).

The complexity of the alignment problem stems from the fact that existing methods are unstable. Researchers continuously invent various tricks to address this shortcoming. For instance, in the fundamental Reinforcement Learning From Human Feedback (RLHF) technique of Language Model alignment, in addition to reward maximization, the Kullback-Leibler divergence between the trainable policy and the SFT policy is minimized. This addition prevents the model from being overfitted to the Reward Model (RM) and generating texts that are out-of-domain for the RM. The Direct Preference Optimization (DPO) method reformulates the optimization task of RLHF and eliminates the Reward Model while tacitly maintaining the requirement for the policy to be close to the SFT policy. In our paper, we argue that this implicit limitation in the DPO method leads to sub-optimal results. We propose a new method called Trust Region DPO (TR-DPO), which updates the reference policy during training. With such a straightforward update, we demonstrate the effectiveness of TR-DPO against DPO on the Anthropic HH and TLDR datasets. We show that TR-DPO outperforms DPO by up to 19%, measured by automatic evaluation with GPT-4. The new alignment approach that we propose allows us to improve the quality of models across several parameters at once, such as coherence, correctness, level of detail, helpfulness, and harmlessness.

In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of-the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.

Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model's interpretability and accuracy. This paper introduces an end-to-end deep learning model, named RKGCN, which dynamically analyses each user's preferences and makes a recommendation of suitable items. It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs. RKGCN is able to offer more personalized and relevant recommendations in three different scenarios. The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies, books, and music.

Image forgery is a topic that has been studied for many years. Before the breakthrough of deep learning, forged images were detected using handcrafted features that did not require training. These traditional methods failed to perform satisfactorily even on datasets much worse in quality than real-life image manipulations. Advances in deep learning have impacted image forgery detection as much as they have impacted other areas of computer vision and have improved the state of the art. Deep learning models require large amounts of labeled data for training. In the case of image forgery, labeled data at the pixel level is a very important factor for the models to learn. None of the existing datasets have sufficient size, realism and pixel-level labeling at the same time. This is due to the high cost of producing and labeling quality images. It can take hours for an image editing expert to manipulate just one image. To bridge this gap, we automate data generation using image composition techniques that are very related to image forgery. Unlike other automated data generation frameworks, we use state of the art image composition deep learning models to generate spliced images close to the quality of real-life manipulations. Finally, we test the generated dataset on the SOTA image manipulation detection model and show that its prediction performance is lower compared to existing datasets, i.e. we produce realistic images that are more difficult to detect. Dataset will be available at //github.com/99eren99/DIS25k .

Graph contrastive learning (GCL), as a self-supervised learning method, can solve the problem of annotated data scarcity. It mines explicit features in unannotated graphs to generate favorable graph representations for downstream tasks. Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations. Graph augmentation produces augmented views by graph perturbations. These views preserve a locally similar structure and exploit explicit features. However, these methods have not considered the interaction existing in subgraphs. To explore the impact of substructure interactions on graph representations, we propose a novel framework called subgraph network-based contrastive learning (SGNCL). SGNCL applies a subgraph network generation strategy to produce augmented views. This strategy converts the original graph into an Edge-to-Node mapping network with both topological and attribute features. The single-shot augmented view is a first-order subgraph network that mines the interaction between nodes, node-edge, and edges. In addition, we also investigate the impact of the second-order subgraph augmentation on mining graph structure interactions, and further, propose a contrastive objective that fuses the first-order and second-order subgraph information. We compare SGNCL with classical and state-of-the-art graph contrastive learning methods on multiple benchmark datasets of different domains. Extensive experiments show that SGNCL achieves competitive or better performance (top three) on all datasets in unsupervised learning settings. Furthermore, SGNCL achieves the best average gain of 6.9\% in transfer learning compared to the best method. Finally, experiments also demonstrate that mining substructure interactions have positive implications for graph contrastive learning.

Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve their reasoning capabilities, this work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LEMA incorporates mistake-correction data pairs during fine-tuning LLMs. Specifically, we first collect inaccurate reasoning paths from various LLMs, and then employ GPT-4 as a ''corrector'' to identify the mistake step, explain the reason for the mistake, correct the mistake and generate the final answer. In addition, we apply a correction-centric evolution strategy that effectively expands the question set for generating correction data. Experiments across various LLMs and reasoning tasks show that LEMA effectively improves CoT-alone fine-tuning. Our further ablations shed light on the non-homogeneous effectiveness between CoT data and correction data. These results suggest a significant potential for LLMs to improve through learning from their mistakes. Our code, models and prompts are publicly available at //github.com/microsoft/LEMA.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.

北京阿比特科技有限公司