To improve how neural networks function it is crucial to understand their learning process. The information bottleneck theory of deep learning proposes that neural networks achieve good generalization by compressing their representations to disregard information that is not relevant to the task. However, empirical evidence for this theory is conflicting, as compression was only observed when networks used saturating activation functions. In contrast, networks with non-saturating activation functions achieved comparable levels of task performance but did not show compression. In this paper we developed more robust mutual information estimation techniques, that adapt to hidden activity of neural networks and produce more sensitive measurements of activations from all functions, especially unbounded functions. Using these adaptive estimation techniques, we explored compression in networks with a range of different activation functions. With two improved methods of estimation, firstly, we show that saturation of the activation function is not required for compression, and the amount of compression varies between different activation functions. We also find that there is a large amount of variation in compression between different network initializations. Secondary, we see that L2 regularization leads to significantly increased compression, while preventing overfitting. Finally, we show that only compression of the last layer is positively correlated with generalization.
Neural network training is inherently sequential where the layers finish the forward propagation in succession, followed by the calculation and back-propagation of gradients (based on a loss function) starting from the last layer. The sequential computations significantly slow down neural network training, especially the deeper ones. Prediction has been successfully used in many areas of computer architecture to speed up sequential processing. Therefore, we propose ADA-GP, that uses gradient prediction adaptively to speed up deep neural network (DNN) training while maintaining accuracy. ADA-GP works by incorporating a small neural network to predict gradients for different layers of a DNN model. ADA-GP uses a novel tensor reorganization to make it feasible to predict a large number of gradients. ADA-GP alternates between DNN training using backpropagated gradients and DNN training using predicted gradients. ADA-GP adaptively adjusts when and for how long gradient prediction is used to strike a balance between accuracy and performance. Last but not least, we provide a detailed hardware extension in a typical DNN accelerator to realize the speed up potential from gradient prediction. Our extensive experiments with fourteen DNN models show that ADA-GP can achieve an average speed up of 1.47x with similar or even higher accuracy than the baseline models. Moreover, it consumes, on average, 34% less energy due to reduced off-chip memory accesses compared to the baseline hardware accelerator.
Utilizing the large-scale unlabeled data from the target domain via pseudo-label clustering algorithms is an important approach for addressing domain adaptation problems in speaker verification tasks. In this paper, we propose a novel progressive subgraph clustering algorithm based on multi-model voting and double-Gaussian based assessment (PGMVG clustering). To fully exploit the relationships among utterances and the complementarity among multiple models, our method constructs multiple k-nearest neighbors graphs based on diverse models and generates high-confidence edges using a voting mechanism. Further, to maximize the intra-class diversity, the connected subgraph is utilized to obtain the initial pseudo-labels. Finally, to prevent disastrous clustering results, we adopt an iterative approach that progressively increases k and employs a double-Gaussian based assessment algorithm to decide whether merging sub-classes.
The fight between discriminative versus generative goes deep, in both the study of artificial and natural intelligence. In our view, both camps have complementary values. So, we sought to synergistically combine them. Here, we propose a methodology to convert deep discriminative networks to kernel generative networks. We leveraged the fact that deep models, including both random forests and deep networks, learn internal representations which are unions of polytopes with affine activation functions to conceptualize them both as generalized partitioning rules. We replace the affine function in each polytope populated by the training data with Gaussian kernel that results in a generative model. Theoretically, we derive the conditions under which our generative models are a consistent estimator of the corresponding class conditional density. Moreover, our proposed models obtain well calibrated posteriors for in-distribution, and extrapolate beyond the training data to handle out-of-distribution inputs reasonably. We believe this approach may be an important step in unifying the thinking and the approaches across the discriminative and the generative divide.
Neural collapse describes the geometry of activation in the final layer of a deep neural network when it is trained beyond performance plateaus. Open questions include whether neural collapse leads to better generalization and, if so, why and how training beyond the plateau helps. We model neural collapse as an information bottleneck (IB) problem in order to investigate whether such a compact representation exists and discover its connection to generalization. We demonstrate that neural collapse leads to good generalization specifically when it approaches an optimal IB solution of the classification problem. Recent research has shown that two deep neural networks independently trained with the same contrastive loss objective are linearly identifiable, meaning that the resulting representations are equivalent up to a matrix transformation. We leverage linear identifiability to approximate an analytical solution of the IB problem. This approximation demonstrates that when class means exhibit $K$-simplex Equiangular Tight Frame (ETF) behavior (e.g., $K$=10 for CIFAR10 and $K$=100 for CIFAR100), they coincide with the critical phase transitions of the corresponding IB problem. The performance plateau occurs once the optimal solution for the IB problem includes all of these phase transitions. We also show that the resulting $K$-simplex ETF can be packed into a $K$-dimensional Gaussian distribution using supervised contrastive learning with a ResNet50 backbone. This geometry suggests that the $K$-simplex ETF learned by supervised contrastive learning approximates the optimal features for source coding. Hence, there is a direct correspondence between optimal IB solutions and generalization in contrastive learning.
Conventional Gaussian process regression exclusively assumes the existence of noise in the output data of model observations. In many scientific and engineering applications, however, the input locations of observational data may also be compromised with uncertainties owing to modeling assumptions, measurement errors, etc. In this work, we propose a Bayesian method that integrates the variability of input data into Gaussian process regression. Considering two types of observables -- noise-corrupted outputs with fixed inputs and those with prior-distribution-defined uncertain inputs, a posterior distribution is estimated via a Bayesian framework to infer the uncertain data locations. Thereafter, such quantified uncertainties of inputs are incorporated into Gaussian process predictions by means of marginalization. The effectiveness of this new regression technique is demonstrated through several numerical examples, in which a consistently good performance of generalization is observed, while a substantial reduction in the predictive uncertainties is achieved by the Bayesian inference of uncertain inputs.
Spiking Neural Networks (SNNs) have emerged as a promising alternative to traditional Deep Neural Networks for low-power computing. However, the effectiveness of SNNs is not solely determined by their performance but also by their energy consumption, prediction speed, and robustness to noise. The recent method Fast \& Deep, along with others, achieves fast and energy-efficient computation by constraining neurons to fire at most once. Known as Time-To-First-Spike (TTFS), this constraint however restricts the capabilities of SNNs in many aspects. In this work, we explore the relationships between performance, energy consumption, speed and stability when using this constraint. More precisely, we highlight the existence of tradeoffs where performance and robustness are gained at the cost of sparsity and prediction latency. To improve these tradeoffs, we propose a relaxed version of Fast \& Deep that allows for multiple spikes per neuron. Our experiments show that relaxing the spike constraint provides higher performance while also benefiting from faster convergence, similar sparsity, comparable prediction latency, and better robustness to noise compared to TTFS SNNs. By highlighting the limitations of TTFS and demonstrating the advantages of unconstrained SNNs we provide valuable insight for the development of effective learning strategies for neuromorphic computing.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.