CATASTROAGRI is an application developed to load, analyze and interactively visualize relevant data on catastrophic agricultural insurance. It also focuses on the analysis of an ARIMA (0,1,1) (0,1,1) model to identify and estimate patterns in the agricultural data of the Puno Region, it presents a decreasing trend because there is a significant relationship between successive values of the time series, We can also state that it is not stationary because the mean and variance do not remain constant over time and the series has periods, and it is observed that the cases are decreasing and increasing over the years, especially the amount to indemnify due to the behavior of the climate in the highlands. The results of the analysis show that agricultural insurance plays an important role in protecting farmers against losses caused by adverse climatic events. The importance of concentrating resources and indemnities on the most affected crops and in the provinces with the highest agricultural production is emphasized. The results of the users' evaluation showed a high level of satisfaction, as well as ease of use.
This study focuses on the use of genetic algorithms to optimize control parameters in two potential strategies called mechanical and chemical control, for mitigating the spread of Huanglongbing (HLB) in citrus orchards. By developing a two-orchard model that incorporates the dispersal of the Asian Citrus Psyllid (ACP), the cost functions and objective function are explored to assess the effectiveness of the proposed control strategies. The mobility of ACP is also taken into account to capture the disease dynamics more realistically. Additionally, a mathematical expression for the global reproduction number ($R_{0}$) is derived, allowing for sensitivity analysis of the model parameters when ACP mobility is present. Furthermore, we mathematically express the cost function and efficiency of the strategy in terms of the final size and individual $R_{0}$ of each patch (i.e., when ACP mobility is absent). The results obtained through the genetic algorithms reveal optimal parameters for each control strategy, providing valuable insights for decision-making in implementing effective control measures against HLB in citrus orchards. This study highlights the importance of optimizing control parameters in disease management in agriculture and provides a solid foundation for future research in developing disease control strategies based on genetic algorithms.
Many applications in computational physics involve approximating problems with microstructure, characterized by multiple spatial scales in their data. However, these numerical solutions are often computationally expensive due to the need to capture fine details at small scales. As a result, simulating such phenomena becomes unaffordable for many-query applications, such as parametrized systems with multiple scale-dependent features. Traditional projection-based reduced order models (ROMs) fail to resolve these issues, even for second-order elliptic PDEs commonly found in engineering applications. To address this, we propose an alternative nonintrusive strategy to build a ROM, that combines classical proper orthogonal decomposition (POD) with a suitable neural network (NN) model to account for the small scales. Specifically, we employ sparse mesh-informed neural networks (MINNs), which handle both spatial dependencies in the solutions and model parameters simultaneously. We evaluate the performance of this strategy on benchmark problems and then apply it to approximate a real-life problem involving the impact of microcirculation in transport phenomena through the tissue microenvironment.
Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge, especially when encountering noisy observations and no prior knowledge available. This study proposes R-DISCOVER, a framework designed to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with superior fits are utilized to iteratively optimize the generator via the RL method and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.
This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM$_{2.5}$ concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM$_{2.5}$ concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
MELAGE, a pioneering Python-based neuroimaging software, emerges as a versatile tool for the visualization, processing, and analysis of medical images. Initially conceived to address the unique challenges of processing 3D ultrasound and MRI brain images during the neonatal period, MELAGE exhibits remarkable adaptability, extending its utility to the domain of adult human brain imaging. At its core, MELAGE features a semi-automatic brain extraction tool empowered by a deep learning module, ensuring precise and efficient brain structure extraction from MRI and 3D Ultrasound data. Moreover, MELAGE offers a comprehensive suite of features, encompassing dynamic 3D visualization, accurate measurements, and interactive image segmentation. This transformative software holds immense promise for researchers and clinicians, offering streamlined image analysis, seamless integration with deep learning algorithms, and broad applicability in the realm of medical imaging.
The self-supervised learning (SSL) paradigm is an essential exploration area, which tries to eliminate the need for expensive data labeling. Despite the great success of SSL methods in computer vision and natural language processing, most of them employ contrastive learning objectives that require negative samples, which are hard to define. This becomes even more challenging in the case of graphs and is a bottleneck for achieving robust representations. To overcome such limitations, we propose a framework for self-supervised graph representation learning - Graph Barlow Twins, which utilizes a cross-correlation-based loss function instead of negative samples. Moreover, it does not rely on non-symmetric neural network architectures - in contrast to state-of-the-art self-supervised graph representation learning method BGRL. We show that our method achieves as competitive results as the best self-supervised methods and fully supervised ones while requiring fewer hyperparameters and substantially shorter computation time (ca. 30 times faster than BGRL).
Machine learning techniques are attractive options for developing highly-accurate automated analysis tools for nanomaterials characterization, including high-resolution transmission electron microscopy (HRTEM). However, successfully implementing such machine learning tools can be difficult due to the challenges in procuring sufficiently large, high-quality training datasets from experiments. In this work, we introduce Construction Zone, a Python package for rapidly generating complex nanoscale atomic structures, and develop an end-to-end workflow for creating large simulated databases for training neural networks. Construction Zone enables fast, systematic sampling of realistic nanomaterial structures, and can be used as a random structure generator for simulated databases, which is important for generating large, diverse synthetic datasets. Using HRTEM imaging as an example, we train a series of neural networks on various subsets of our simulated databases to segment nanoparticles and holistically study the data curation process to understand how various aspects of the curated simulated data -- including simulation fidelity, the distribution of atomic structures, and the distribution of imaging conditions -- affect model performance across several experimental benchmarks. Using our results, we are able to achieve state-of-the-art segmentation performance on experimental HRTEM images of nanoparticles from several experimental benchmarks and, further, we discuss robust strategies for consistently achieving high performance with machine learning in experimental settings using purely synthetic data.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.