Recent research has shown that Machine Learning/Deep Learning (ML/DL) models are particularly vulnerable to adversarial perturbations, which are small changes made to the input data in order to fool a machine learning classifier. The Digital Twin, which is typically described as consisting of a physical entity, a virtual counterpart, and the data connections in between, is increasingly being investigated as a means of improving the performance of physical entities by leveraging computational techniques, which are enabled by the virtual counterpart. This paper explores the susceptibility of Digital Twin (DT), a virtual model designed to accurately reflect a physical object using ML/DL classifiers that operate as Cyber Physical Systems (CPS), to adversarial attacks. As a proof of concept, we first formulate a DT of a vehicular system using a deep neural network architecture and then utilize it to launch an adversarial attack. We attack the DT model by perturbing the input to the trained model and show how easily the model can be broken with white-box attacks.
Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.
Adversarial attacks on Graph Neural Networks (GNNs) reveal their security vulnerabilities, limiting their adoption in safety-critical applications. However, existing attack strategies rely on the knowledge of either the GNN model being used or the predictive task being attacked. Is this knowledge necessary? For example, a graph may be used for multiple downstream tasks unknown to a practical attacker. It is thus important to test the vulnerability of GNNs to adversarial perturbations in a model and task agnostic setting. In this work, we study this problem and show that GNNs remain vulnerable even when the downstream task and model are unknown. The proposed algorithm, TANDIS (Targeted Attack via Neighborhood DIStortion) shows that distortion of node neighborhoods is effective in drastically compromising prediction performance. Although neighborhood distortion is an NP-hard problem, TANDIS designs an effective heuristic through a novel combination of Graph Isomorphism Network with deep Q-learning. Extensive experiments on real datasets and state-of-the-art models show that, on average, TANDIS is up to 50% more effective than state-of-the-art techniques, while being more than 1000 times faster.
Extensive evidence has demonstrated that deep neural networks (DNNs) are vulnerable to backdoor attacks, which motivates the development of backdoor attacks detection. Most detection methods are designed to verify whether a model is infected with presumed types of backdoor attacks, yet the adversary is likely to generate diverse backdoor attacks in practice that are unforeseen to defenders, which challenge current detection strategies. In this paper, we focus on this more challenging scenario and propose a universal backdoor attacks detection method named Adaptive Adversarial Probe (A2P). Specifically, we posit that the challenge of universal backdoor attacks detection lies in the fact that different backdoor attacks often exhibit diverse characteristics in trigger patterns (i.e., sizes and transparencies). Therefore, our A2P adopts a global-to-local probing framework, which adversarially probes images with adaptive regions/budgets to fit various backdoor triggers of different sizes/transparencies. Regarding the probing region, we propose the attention-guided region generation strategy that generates region proposals with different sizes/locations based on the attention of the target model, since trigger regions often manifest higher model activation. Considering the attack budget, we introduce the box-to-sparsity scheduling that iteratively increases the perturbation budget from box to sparse constraint, so that we could better activate different latent backdoors with different transparencies. Extensive experiments on multiple datasets (CIFAR-10, GTSRB, Tiny-ImageNet) demonstrate that our method outperforms state-of-the-art baselines by large margins (+12%).
In recent times, organizations purport to undergo unprecedented transformations owing to the adoption of digital technologies. Consequently, there has been a substantial effort in academia attempting to better understand the phenomenon of digital transformation in business organizations. However, a cumulative tradition of research on digital transformation, underpinned by a consolidated theoretical positioning, is compromised by the loosely defined constructs, confusion in terminology and lack of an overarching framework of its nomological net. This paper, therefore, features a systematic review of the assorted and fragmented literature on this notion of Digital Transformation by critically analysing 174 peer-reviewed journal articles published between 2013 and 2021, in over thirty leading academic outlets. The authors provide a consolidated nomological net of digital transformation by synthesizing themes and dominant theories apparent in existing digital transformation literature, which will be useful for future academic studies.
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.