亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Safe reinforcement learning (RL) agents accomplish given tasks while adhering to specific constraints. Employing constraints expressed via easily-understandable human language offers considerable potential for real-world applications due to its accessibility and non-reliance on domain expertise. Previous safe RL methods with natural language constraints typically adopt a recurrent neural network, which leads to limited capabilities when dealing with various forms of human language input. Furthermore, these methods often require a ground-truth cost function, necessitating domain expertise for the conversion of language constraints into a well-defined cost function that determines constraint violation. To address these issues, we proposes to use pre-trained language models (LM) to facilitate RL agents' comprehension of natural language constraints and allow them to infer costs for safe policy learning. Through the use of pre-trained LMs and the elimination of the need for a ground-truth cost, our method enhances safe policy learning under a diverse set of human-derived free-form natural language constraints. Experiments on grid-world navigation and robot control show that the proposed method can achieve strong performance while adhering to given constraints. The usage of pre-trained LMs allows our method to comprehend complicated constraints and learn safe policies without the need for ground-truth cost at any stage of training or evaluation. Extensive ablation studies are conducted to demonstrate the efficacy of each part of our method.

相關內容

Partial label learning (PLL) learns from training examples each associated with multiple candidate labels, among which only one is valid. In recent years, benefiting from the strong capability of dealing with ambiguous supervision and the impetus of modern data augmentation methods, consistency regularization-based PLL methods have achieved a series of successes and become mainstream. However, as the partial annotation becomes insufficient, their performances drop significantly. In this paper, we leverage easily accessible unlabeled examples to facilitate the partial label consistency regularization. In addition to a partial supervised loss, our method performs a controller-guided consistency regularization at both the label-level and representation-level with the help of unlabeled data. To minimize the disadvantages of insufficient capabilities of the initial supervised model, we use the controller to estimate the confidence of each current prediction to guide the subsequent consistency regularization. Furthermore, we dynamically adjust the confidence thresholds so that the number of samples of each class participating in consistency regularization remains roughly equal to alleviate the problem of class-imbalance. Experiments show that our method achieves satisfactory performances in more practical situations, and its modules can be applied to existing PLL methods to enhance their capabilities.

Large discrete action spaces (LDAS) remain a central challenge in reinforcement learning. Existing solution approaches can handle unstructured LDAS with up to a few million actions. However, many real-world applications in logistics, production, and transportation systems have combinatorial action spaces, whose size grows well beyond millions of actions, even on small instances. Fortunately, such action spaces exhibit structure, e.g., equally spaced discrete resource units. With this work, we focus on handling structured LDAS (SLDAS) with sizes that cannot be handled by current benchmarks: we propose Dynamic Neighborhood Construction (DNC), a novel exploitation paradigm for SLDAS. We present a scalable neighborhood exploration heuristic that utilizes this paradigm and efficiently explores the discrete neighborhood around the continuous proxy action in structured action spaces with up to $10^{73}$ actions. We demonstrate the performance of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across two distinct environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being computationally more efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.

A recently popular approach to solving reinforcement learning is with data from human preferences. In fact, human preference data are now used with classic reinforcement learning algorithms such as actor-critic methods, which involve evaluating an intermediate policy over a reward learned from human preference data with distribution shift, known as off-policy evaluation (OPE). Such algorithm includes (i) learning reward function from human preference dataset, and (ii) learning expected cumulative reward of a target policy. Despite the huge empirical success, existing OPE methods with preference data often lack theoretical understanding and rely heavily on heuristics. In this paper, we study the sample efficiency of OPE with human preference and establish a statistical guarantee for it. Specifically, we approach OPE by learning the value function by fitted-Q-evaluation with a deep neural network. By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process and obtain a sample-efficient estimator without suffering from the curse of high data ambient dimensionality. Under the assumption of high reward smoothness, our results \textit{almost align with the classical OPE results with observable reward data}. To the best of our knowledge, this is the first result that establishes a \textit{provably efficient} guarantee for off-policy evaluation with RLHF.

Federated learning (FL) inevitably confronts the challenge of system heterogeneity in practical scenarios. To enhance the capabilities of most model-homogeneous FL methods in handling system heterogeneity, we propose a training scheme that can extend their capabilities to cope with this challenge. In this paper, we commence our study with a detailed exploration of homogeneous and heterogeneous FL settings and discover three key observations: (1) a positive correlation between client performance and layer similarities, (2) higher similarities in the shallow layers in contrast to the deep layers, and (3) the smoother gradients distributions indicate the higher layer similarities. Building upon these observations, we propose InCo Aggregation that leverages internal cross-layer gradients, a mixture of gradients from shallow and deep layers within a server model, to augment the similarity in the deep layers without requiring additional communication between clients. Furthermore, our methods can be tailored to accommodate model-homogeneous FL methods such as FedAvg, FedProx, FedNova, Scaffold, and MOON, to expand their capabilities to handle the system heterogeneity. Copious experimental results validate the effectiveness of InCo Aggregation, spotlighting internal cross-layer gradients as a promising avenue to enhance the performance in heterogeneous FL.

Combining machine learning (ML) with computational fluid dynamics (CFD) opens many possibilities for improving simulations of technical and natural systems. However, CFD+ML algorithms require exchange of data, synchronization, and calculation on heterogeneous hardware, making their implementation for large-scale problems exceptionally challenging. We provide an effective and scalable solution to developing CFD+ML algorithms using open source software OpenFOAM and SmartSim. SmartSim provides an Orchestrator that significantly simplifies the programming of CFD+ML algorithms and a Redis database that ensures highly scalable data exchange between ML and CFD clients. We show how to leverage SmartSim to effectively couple different segments of OpenFOAM with ML, including pre/post-processing applications, solvers, function objects, and mesh motion solvers. We additionally provide an OpenFOAM sub-module with examples that can be used as starting points for real-world applications in CFD+ML.

Multi-agent reinforcement learning is an area of rapid advancement in artificial intelligence and machine learning. One of the important questions to be answered is how to conduct credit assignment in a multi-agent system. There have been many schemes designed to conduct credit assignment by multi-agent reinforcement learning algorithms. Although these credit assignment schemes have been proved useful in improving the performance of multi-agent reinforcement learning, most of them are designed heuristically without a rigorous theoretic basis and therefore infeasible to understand how agents cooperate. In this thesis, we aim at investigating the foundation of credit assignment in multi-agent reinforcement learning via cooperative game theory. We first extend a game model called convex game and a payoff distribution scheme called Shapley value in cooperative game theory to Markov decision process, named as Markov convex game and Markov Shapley value respectively. We represent a global reward game as a Markov convex game under the grand coalition. As a result, Markov Shapley value can be reasonably used as a credit assignment scheme in the global reward game. Markov Shapley value possesses the following virtues: (i) efficiency; (ii) identifiability of dummy agents; (iii) reflecting the contribution and (iv) symmetry, which form the fair credit assignment. Based on Markov Shapley value, we propose three multi-agent reinforcement learning algorithms called SHAQ, SQDDPG and SMFPPO. Furthermore, we extend Markov convex game to partial observability to deal with the partially observable problems, named as partially observable Markov convex game. In application, we evaluate SQDDPG and SMFPPO on the real-world problem in energy networks.

Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

北京阿比特科技有限公司