亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stepped wedge cluster randomized experiments represent a class of unidirectional crossover designs increasingly adopted for comparative effectiveness and implementation science research. Although stepped wedge cluster randomized experiments have become popular, definitions of estimands and robust methods to target clearly-defined estimands remain insufficient. To address this gap, we describe a class of estimands that explicitly acknowledge the multilevel data structure in stepped wedge cluster randomized experiments, and highlight three typical members of the estimand class that are interpretable and are of practical interest. We then introduce four possible formulations of analysis of covariance (ANCOVA) working models to achieve estimand-aligned analyses. By exploiting baseline covariates, each ANCOVA model can potentially improve the estimation efficiency over the unadjusted estimators. In addition, each ANCOVA estimator is model-assisted in the sense that its point estimator is consistent with the target estimand even when the working model is misspecified. Under the stepped wedge randomization scheme, we establish the finite population Central Limit Theorem for each estimator, which motivates design-based variance estimators. Through simulations, we study the finite-sample operating characteristics of the ANCOVA estimators under different data-generating processes. We illustrate their applications via the analysis of the Washington State Expedited Partner Therapy study.

相關內容

Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, numerical, or continuous exposures measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to right-censoring and competing risks. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as $\sqrt{n}$-consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID-19 hospitalized patients, where death by other causes is taken to be the competing event.

We introduce a causal regularisation extension to anchor regression (AR) for improved out-of-distribution (OOD) generalisation. We present anchor-compatible losses, aligning with the anchor framework to ensure robustness against distribution shifts. Various multivariate analysis (MVA) algorithms, such as (Orthonormalized) PLS, RRR, and MLR, fall within the anchor framework. We observe that simple regularisation enhances robustness in OOD settings. Estimators for selected algorithms are provided, showcasing consistency and efficacy in synthetic and real-world climate science problems. The empirical validation highlights the versatility of anchor regularisation, emphasizing its compatibility with MVA approaches and its role in enhancing replicability while guarding against distribution shifts. The extended AR framework advances causal inference methodologies, addressing the need for reliable OOD generalisation.

We consider the chance-constrained binary knapsack problem (CKP), where the item weights are independent and normally distributed. We introduce a continuous relaxation for the CKP, represented as a non-convex optimization problem, which we call the non-convex relaxation. A comparative study shows that the non-convex relaxation provides an upper bound for the CKP, at least as tight as those obtained from other continuous relaxations for the CKP. Furthermore, the quality of the obtained upper bound is guaranteed to be at most twice the optimal objective value of the CKP. Despite its non-convex nature, we show that the non-convex relaxation can be solved in polynomial time. Subsequently, we proposed a polynomial-time 1/2-approximation algorithm for the CKP based on this relaxation, providing a lower bound for the CKP. Computational test results demonstrate that the non-convex relaxation and the proposed approximation algorithm yields tight lower and upper bounds for the CKP within a short computation time, ensuring the quality of the obtained bounds.

In the present study, the efficiency of preconditioners for solving linear systems associated with the discretized variable-density incompressible Navier-Stokes equations with semiimplicit second-order accuracy in time and spectral accuracy in space is investigated. The method, in which the inverse operator for the constant-density flow system acts as preconditioner, is implemented for three iterative solvers: the General Minimal Residual, the Conjugate Gradient and the Richardson Minimal Residual. We discuss the method, first, in the context of the one-dimensional flow case where a top-hat like profile for the density is used. Numerical evidence shows that the convergence is significantly improved due to the notable decrease in the condition number of the operators. Most importantly, we then validate the robustness and convergence properties of the method on two more realistic problems: the two-dimensional Rayleigh-Taylor instability problem and the three-dimensional variable-density swirling jet.

This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain. Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain. The low regularity of the solution allows the finite element approximations to converge at lower orders. We prove the existence, uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition. For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables, whereas piecewise constant functions are employed to approximate the control variable. The temporal discretization is based on the implicit Euler scheme. We derive both a priori and a posteriori error bounds for the state, control and co-state variables. Numerical experiments are performed to validate the theoretical rates of convergence.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of parameters that affect the final design leads to a need for new approaches to quantify their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We use the recently introduced dissection index that can decouple a given system of DAEs into ordinary differential equations, only depending on differential variables, and purely algebraic equations, that describe the relations between differential and algebraic variables. The idea is to then only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, and it may also reduce the learning effort as only the differential variables need to be learned.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

Multi-contrast (MC) Magnetic Resonance Imaging (MRI) reconstruction aims to incorporate a reference image of auxiliary modality to guide the reconstruction process of the target modality. Known MC reconstruction methods perform well with a fully sampled reference image, but usually exhibit inferior performance, compared to single-contrast (SC) methods, when the reference image is missing or of low quality. To address this issue, we propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images. DuDoUniNeXt adopts a hybrid backbone that combines CNN and ViT, enabling specific adjustment of image domain and k-space reconstruction. Specifically, an adaptive coarse-to-fine feature fusion module (AdaC2F) is devised to dynamically process the information from reference images of varying qualities. Besides, a partially shared shallow feature extractor (PaSS) is proposed, which uses shared and distinct parameters to handle consistent and discrepancy information among contrasts. Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly. Ablation studies show the effectiveness of the proposed hybrid backbone, AdaC2F, PaSS, and the dual-domain unified learning scheme.

Language models (LMs) show promise as tools for communicating science to the general public by simplifying and summarizing complex language. Because models can be prompted to generate text for a specific audience (e.g., college-educated adults), LMs might be used to create multiple versions of plain language summaries for people with different familiarities of scientific topics. However, it is not clear what the benefits and pitfalls of adaptive plain language are. When is simplifying necessary, what are the costs in doing so, and do these costs differ for readers with different background knowledge? Through three within-subjects studies in which we surface summaries for different envisioned audiences to participants of different backgrounds, we found that while simpler text led to the best reading experience for readers with little to no familiarity in a topic, high familiarity readers tended to ignore certain details in overly plain summaries (e.g., study limitations). Our work provides methods and guidance on ways of adapting plain language summaries beyond the single "general" audience.

北京阿比特科技有限公司