亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent progress in number field sieve (NFS) has shaken the security of Pairing-based Cryptography. For the discrete logarithm problem (DLP) in finite field, we present the first systematic review of the NFS algorithms from three perspectives: the degree $\alpha$, constant $c$, and hidden constant $o(1)$ in the asymptotic complexity $L_Q\left(\alpha,c\right)$ and indicate that further research is required to optimize the hidden constant. Using the special extended tower NFS algorithm, we conduct a thorough security evaluation for all the existing standardized PF curves as well as several commonly utilized curves, which reveals that the BN256 curves recommended by the SM9 and the previous ISO/IEC standard exhibit only 99.92 bits of security, significantly lower than the intended 128-bit level. In addition, we comprehensively analyze the security and efficiency of BN, BLS, and KSS curves for different security levels. Our analysis suggests that the BN curve exhibits superior efficiency for security strength below approximately 105 bit. For a 128-bit security level, BLS12 and BLS24 curves are the optimal choices, while the BLS24 curve offers the best efficiency for security levels of 160bit, 192bit, and 256bit.

相關內容

 是一種分布式文件系統協議,最初由Sun Microsystems公司開發,并于1984年發布。[1]其功能旨在允許客戶端主機可以像訪問本地存儲一樣通過網絡訪問服務器端文件。 NFS和其他許多協議一樣,是基于開放網絡運算遠程過程調用(ONC RPC)協議之上的。它是一個開放、標準的RFC協議,任何人或組織都可以依據標準實現它。 >

Particle-based variational inference methods (ParVIs) such as Stein variational gradient descent (SVGD) update the particles based on the kernelized Wasserstein gradient flow for the Kullback-Leibler (KL) divergence. However, the design of kernels is often non-trivial and can be restrictive for the flexibility of the method. Recent works show that functional gradient flow approximations with quadratic form regularization terms can improve performance. In this paper, we propose a ParVI framework, called generalized Wasserstein gradient descent (GWG), based on a generalized Wasserstein gradient flow of the KL divergence, which can be viewed as a functional gradient method with a broader class of regularizers induced by convex functions. We show that GWG exhibits strong convergence guarantees. We also provide an adaptive version that automatically chooses Wasserstein metric to accelerate convergence. In experiments, we demonstrate the effectiveness and efficiency of the proposed framework on both simulated and real data problems.

signSGD is popular in nonconvex optimization due to its communication efficiency. Yet, existing analyses of signSGD rely on assuming that data are sampled with replacement in each iteration, contradicting the practical implementation where data are randomly reshuffled and sequentially fed into the algorithm. We bridge this gap by proving the first convergence result of signSGD with random reshuffling (SignRR) for nonconvex optimization. Given the dataset size $n$, the number of epochs of data passes $T$, and the variance bound of a stochastic gradient $\sigma^2$, we show that SignRR has the same convergence rate $O(\log(nT)/\sqrt{nT} + \|\sigma\|_1)$ as signSGD \citep{bernstein2018signsgd}. We then present SignRVR and SignRVM, which leverage variance-reduced gradients and momentum updates respectively, both converging at $O(\log(nT)/\sqrt{nT})$. In contrast with the analysis of signSGD, our results do not require an extremely large batch size in each iteration to be of the same order as the total number of iterations \citep{bernstein2018signsgd} or the signs of stochastic and true gradients match element-wise with a minimum probability of 1/2 \citep{safaryan2021stochastic}. We also extend our algorithms to cases where data are distributed across different machines, yielding dist-SignRVR and dist-SignRVM, both converging at $O(\log(n_0T)/\sqrt{n_0T})$, where $n_0$ is the dataset size of a single machine. We back up our theoretical findings through experiments on simulated and real-world problems, verifying that randomly reshuffled sign methods match or surpass existing baselines.

It was proved by Maksimova in 1977 that exactly eight varieties of Heyting algebras have the amalgamation property, and hence exactly eight axiomatic extensions of intuitionistic propositional logic have the deductive interpolation property. The prevalence of the deductive interpolation property for axiomatic extensions of substructural logics and the amalgamation property for varieties of pointed residuated lattices, their equivalent algebraic semantics, is far less well understood, however. Taking as our starting point a formulation of intuitionistic propositional logic as the full Lambek calculus with exchange, weakening, and contraction, we investigate the role of the exchange rule--algebraically, the commutativity law--in determining the scope of these properties. First, we show that there are continuum-many varieties of idempotent semilinear residuated lattices that have the amalgamation property and contain non-commutative members, and hence continuum-many axiomatic extensions of the corresponding logic that have the deductive interpolation property in which exchange is not derivable. We then show that, in contrast, exactly sixty varieties of commutative idempotent semilinear residuated lattices have the amalgamation property, and hence exactly sixty axiomatic extensions of the corresponding logic with exchange have the deductive interpolation property. From this latter result, it follows also that there are exactly sixty varieties of commutative idempotent semilinear residuated lattices whose first-order theories have a model completion.

Many statistical problems in causal inference involve a probability distribution other than the one from which data are actually observed; as an additional complication, the object of interest is often a marginal quantity of this other probability distribution. This creates many practical complications for statistical inference, even where the problem is non-parametrically identified. In particular, it is difficult to perform likelihood-based inference, or even to simulate from the model in a general way. We introduce the `frugal parameterization', which places the causal effect of interest at its centre, and then builds the rest of the model around it. We do this in a way that provides a recipe for constructing a regular, non-redundant parameterization using causal quantities of interest. In the case of discrete variables we can use odds ratios to complete the parameterization, while in the continuous case copulas are the natural choice; other possibilities are also discussed. Our methods allow us to construct and simulate from models with parametrically specified causal distributions, and fit them using likelihood-based methods, including fully Bayesian approaches. Our proposal includes parameterizations for the average causal effect and effect of treatment on the treated, as well as other causal quantities of interest.

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, by using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

Edge/fog computing, as a distributed computing paradigm, satisfies the low-latency requirements of ever-increasing number of IoT applications and has become the mainstream computing paradigm behind IoT applications. However, because large number of IoT applications require execution on the edge/fog resources, the servers may be overloaded. Hence, it may disrupt the edge/fog servers and also negatively affect IoT applications' response time. Moreover, many IoT applications are composed of dependent components incurring extra constraints for their execution. Besides, edge/fog computing environments and IoT applications are inherently dynamic and stochastic. Thus, efficient and adaptive scheduling of IoT applications in heterogeneous edge/fog computing environments is of paramount importance. However, limited computational resources on edge/fog servers imposes an extra burden for applying optimal but computationally demanding techniques. To overcome these challenges, we propose a Deep Reinforcement Learning-based IoT application Scheduling algorithm, called DRLIS to adaptively and efficiently optimize the response time of heterogeneous IoT applications and balance the load of the edge/fog servers. We implemented DRLIS as a practical scheduler in the FogBus2 function-as-a-service framework for creating an edge-fog-cloud integrated serverless computing environment. Results obtained from extensive experiments show that DRLIS significantly reduces the execution cost of IoT applications by up to 55%, 37%, and 50% in terms of load balancing, response time, and weighted cost, respectively, compared with metaheuristic algorithms and other reinforcement learning techniques.

Maximum subarray is a classical problem in computer science that given an array of numbers aims to find a contiguous subarray with the largest sum. We focus on its use for a noisy statistical problem of localizing an interval with a mean different from background. While a naive application of maximum subarray fails at this task, both a penalized and a constrained version can succeed. We show that the penalized version can be derived for common exponential family distributions, in a manner similar to the change-point detection literature, and we interpret the resulting optimal penalty value. The failure of the naive formulation is then explained by an analysis of the estimated interval boundaries. Experiments further quantify the effect of deviating from the optimal penalty. We also relate the penalized and constrained formulations and show that the solutions to the former lie on the convex hull of the solutions to the latter.

We propose a neural network-based meta-learning method to efficiently solve partial differential equation (PDE) problems. The proposed method is designed to meta-learn how to solve a wide variety of PDE problems, and uses the knowledge for solving newly given PDE problems. We encode a PDE problem into a problem representation using neural networks, where governing equations are represented by coefficients of a polynomial function of partial derivatives, and boundary conditions are represented by a set of point-condition pairs. We use the problem representation as an input of a neural network for predicting solutions, which enables us to efficiently predict problem-specific solutions by the forwarding process of the neural network without updating model parameters. To train our model, we minimize the expected error when adapted to a PDE problem based on the physics-informed neural network framework, by which we can evaluate the error even when solutions are unknown. We demonstrate that our proposed method outperforms existing methods in predicting solutions of PDE problems.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司