In-context learning$\unicode{x2013}$the ability to configure a model's behavior with different prompts$\unicode{x2013}$has revolutionized the field of natural language processing, alleviating the need for task-specific models and paving the way for generalist models capable of assisting with any query. Computer vision, in contrast, has largely stayed in the former regime: specialized decoders and finetuning protocols are generally required to perform dense tasks such as semantic segmentation and depth estimation. In this work we explore a simple mechanism for in-context learning of such scene understanding tasks: nearest neighbor retrieval from a prompt of annotated features. We propose a new pretraining protocol$\unicode{x2013}$leveraging attention within and across images$\unicode{x2013}$which yields representations particularly useful in this regime. The resulting Hummingbird model, suitably prompted, performs various scene understanding tasks without modification while approaching the performance of specialists that have been finetuned for each task. Moreover, Hummingbird can be configured to perform new tasks much more efficiently than finetuned models, raising the possibility of scene understanding in the interactive assistant regime.
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects.
We consider the problems of testing and learning quantum $k$-junta channels, which are $n$-qubit to $n$-qubit quantum channels acting non-trivially on at most $k$ out of $n$ qubits and leaving the rest of qubits unchanged. We show the following. 1. An $O\left(k\right)$-query algorithm to distinguish whether the given channel is $k$-junta channel or is far from any $k$-junta channels, and a lower bound $\Omega\left(\sqrt{k}\right)$ on the number of queries; 2. An $\widetilde{O}\left(4^k\right)$-query algorithm to learn a $k$-junta channel, and a lower bound $\Omega\left(4^k/k\right)$ on the number of queries. This gives the first junta channel testing and learning results, and partially answers an open problem raised by Chen et al. (2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in Montanaro and Osborne (2010). Besides, we introduce $\textit{Influence-Sample}$ to replace $\textit{Fourier-Sample}$ proposed in Atici and Servedio (2007). Our $\textit{Influence-Sample}$ includes only single-qubit operations and results in only constant-factor decrease in efficiency.
In this paper, we consider the problem of preprocessing a text $T$ of length $n$ and a dictionary $\mathcal{D}$ to answer multiple types of pattern queries. Inspired by [Charalampopoulos-Kociumaka-Mohamed-Radoszewski-Rytter-Wale\'n ISAAC 2019], we consider the Internal Dictionary, where the dictionary is interval in the sense that every pattern is given as a fragment of $T$. Therefore, the size of $\mathcal{D}$ is proportional to the number of patterns instead of their total length, which could be $\Theta(n \cdot |\mathcal{D}|)$. We propose a new technique to preprocess $T$ and organize the substring structure. In this way, we are able to develop algorithms to answer queries more efficiently than in previous works.
A pervasive methodological error is the post-hoc interpretation of $p$-values. A $p$-value $p$ is not the level at which we reject the null, it is the level at which we would have rejected the null had we chosen level $p$. We introduce the notion of a post-hoc $p$-value, that does admit this interpretation. We show that $p$ is a post-hoc $p$-value if and only if $1/p$ is an $e$-value. Among other things, this implies that the product of independent post-hoc $p$-values is a post-hoc $p$-value. Moreover, we generalize post-hoc validity to a sequential setting and find that $(p_t)_{t \geq 1}$ is a post-hoc anytime valid $p$-process if and only if $(1/p_t)_{t \geq 1}$ is an $e$-process. In addition, we show that if we admit randomized procedures, any non-randomized post-hoc $p$-value can be trivially improved. In fact, we find that this in some sense characterizes non-randomized post-hoc $p$-values. Finally, we argue that we need to go beyond $e$-values if we want to consider randomized post-hoc inference in its full generality.
Agent-based simulators provide granular representations of complex intelligent systems by directly modelling the interactions of the system's constituent agents. Their high-fidelity nature enables hyper-local policy evaluation and testing of what-if scenarios, but is associated with large computational costs that inhibits their widespread use. Surrogate models can address these computational limitations, but they must behave consistently with the agent-based model under policy interventions of interest. In this paper, we capitalise on recent developments on causal abstractions to develop a framework for learning interventionally consistent surrogate models for agent-based simulators. Our proposed approach facilitates rapid experimentation with policy interventions in complex systems, while inducing surrogates to behave consistently with high probability with respect to the agent-based simulator across interventions of interest. We demonstrate with empirical studies that observationally trained surrogates can misjudge the effect of interventions and misguide policymakers towards suboptimal policies, while surrogates trained for interventional consistency with our proposed method closely mimic the behaviour of an agent-based model under interventions of interest.
We present a randomized algorithm that computes single-source shortest paths (SSSP) in $O(m\log^8(n)\log W)$ time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are $\tilde O((m+n^{1.5})\log W)$ [BLNPSSSW FOCS'20] and $m^{4/3+o(1)}\log W$ [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic $\tilde O(m\sqrt{n}\log W)$ bound from over three decades ago [Gabow and Tarjan SICOMP'89].
The most successful multi-domain text classification (MDTC) approaches employ the shared-private paradigm to facilitate the enhancement of domain-invariant features through domain-specific attributes. Additionally, they employ adversarial training to align marginal feature distributions. Nevertheless, these methodologies encounter two primary challenges: (1) Neglecting class-aware information during adversarial alignment poses a risk of misalignment; (2) The limited availability of labeled data across multiple domains fails to ensure adequate discriminative capacity for the model. To tackle these issues, we propose a method called Regularized Conditional Alignment (RCA) to align the joint distributions of domains and classes, thus matching features within the same category and amplifying the discriminative qualities of acquired features. Moreover, we employ entropy minimization and virtual adversarial training to constrain the uncertainty of predictions pertaining to unlabeled data and enhance the model's robustness. Empirical results on two benchmark datasets demonstrate that our RCA approach outperforms state-of-the-art MDTC techniques.
Complexity classes such as $\#\mathbf{P}$, $\oplus\mathbf{P}$, $\mathbf{GapP}$, $\mathbf{OptP}$, $\mathbf{NPMV}$, or the class of fuzzy languages realised by polynomial-time fuzzy nondeterministic Turing machines, can all be described in terms of a class $\mathbf{NP}[S]$ for a suitable semiring $S$, defined via weighted Turing machines over $S$ similarly as $\mathbf{NP}$ is defined via the classical nondeterministic Turing machines. Other complexity classes of decision problems can be lifted to the quantitative world using the same recipe as well, and the resulting classes relate to the original ones in the same way as weighted automata or logics relate to their unweighted counterparts. The article surveys these too-little-known connexions between weighted automata theory and computational complexity theory implicit in the existing literature, suggests a systematic approach to the study of weighted complexity classes, and presents several new observations strengthening the relation between both fields. In particular, it is proved that a natural extension of the Boolean satisfiability problem to weighted propositional logic is complete for the class $\mathbf{NP}[S]$ when $S$ is a finitely generated semiring. Moreover, a class of semiring-valued functions $\mathbf{FP}[S]$ is introduced for each semiring $S$ as a counterpart to the class $\mathbf{P}$, and the relations between $\mathbf{FP}[S]$ and $\mathbf{NP}[S]$ are considered.
We present a modular approach to \emph{reinforcement learning} (RL) in environments consisting of simpler components evolving in parallel. A monolithic view of such modular environments may be prohibitively large to learn, or may require unrealizable communication between the components in the form of a centralized controller. Our proposed approach is based on the assume-guarantee paradigm where the optimal control for the individual components is synthesized in isolation by making \emph{assumptions} about the behaviors of neighboring components, and providing \emph{guarantees} about their own behavior. We express these \emph{assume-guarantee contracts} as regular languages and provide automatic translations to scalar rewards to be used in RL. By combining local probabilities of satisfaction for each component, we provide a lower bound on the probability of satisfaction of the complete system. By solving a Markov game for each component, RL can produce a controller for each component that maximizes this lower bound. The controller utilizes the information it receives through communication, observations, and any knowledge of a coarse model of other agents. We experimentally demonstrate the efficiency of the proposed approach on a variety of case studies.
Multi-modal aspect-based sentiment analysis (MABSA) has recently attracted increasing attention. The span-based extraction methods, such as FSUIE, demonstrate strong performance in sentiment analysis due to their joint modeling of input sequences and target labels. However, previous methods still have certain limitations: (i) They ignore the difference in the focus of visual information between different analysis targets (aspect or sentiment). (ii) Combining features from uni-modal encoders directly may not be sufficient to eliminate the modal gap and can cause difficulties in capturing the image-text pairwise relevance. (iii) Existing span-based methods for MABSA ignore the pairwise relevance of target span boundaries. To tackle these limitations, we propose a novel framework called DQPSA for multi-modal sentiment analysis. Specifically, our model contains a Prompt as Dual Query (PDQ) module that uses the prompt as both a visual query and a language query to extract prompt-aware visual information and strengthen the pairwise relevance between visual information and the analysis target. Additionally, we introduce an Energy-based Pairwise Expert (EPE) module that models the boundaries pairing of the analysis target from the perspective of an Energy-based Model. This expert predicts aspect or sentiment span based on pairwise stability. Experiments on three widely used benchmarks demonstrate that DQPSA outperforms previous approaches and achieves a new state-of-the-art performance.