This paper addresses the challenging scheduling problem of coflows with release times, with the objective of minimizing the total weighted completion time. Previous literature has predominantly concentrated on establishing the scheduling order of coflows. In advancing this research, we contribute by optimizing performance through the determination of the flow scheduling order. The proposed approximation algorithm achieves approximation ratios of $3$ and $2+\frac{1}{LB}$ for arbitrary and zero release times, respectively, where $LB$ is the minimum lower bound of coflow completion time. To further improve time complexity, we streamline linear programming by employing interval-indexed relaxation, thereby reducing the number of variables. As a result, for $\epsilon>0$, the approximation algorithm achieves approximation ratios of $3 + \epsilon$ and $2 + \epsilon$ for arbitrary and zero release times, respectively. Notably, these advancements surpass the previously best-known approximation ratios of 5 and 4 for arbitrary and zero release times, respectively, as established by Shafiee and Ghaderi.
A major threat to the peer-review systems of computer science conferences is the existence of "collusion rings" between reviewers. In such collusion rings, reviewers who have also submitted their own papers to the conference work together to manipulate the conference's paper assignment, with the aim of being assigned to review each other's papers. The most straightforward way that colluding reviewers can manipulate the paper assignment is by indicating their interest in each other's papers through strategic paper bidding. One potential approach to solve this important problem would be to detect the colluding reviewers from their manipulated bids, after which the conference can take appropriate action. While prior work has has developed effective techniques to detect other kinds of fraud, no research has yet established that detecting collusion rings is even possible. In this work, we tackle the question of whether it is feasible to detect collusion rings from the paper bidding. To answer this question, we conduct empirical analysis of two realistic conference bidding datasets, including evaluations of existing algorithms for fraud detection in other applications. We find that collusion rings can achieve considerable success at manipulating the paper assignment while remaining hidden from detection: for example, in one dataset, undetected colluders are able to achieve assignment to up to 30% of the papers authored by other colluders. In addition, when 10 colluders bid on all of each other's papers, no detection algorithm outputs a group of reviewers with more than 31% overlap with the true colluders. These results suggest that collusion cannot be effectively detected from the bidding, demonstrating the need to develop more complex detection algorithms that leverage additional metadata.
This paper introduces a novel generative model for discrete distributions based on continuous normalizing flows on the submanifold of factorizing discrete measures. Integration of the flow gradually assigns categories and avoids issues of discretizing the latent continuous model like rounding, sample truncation etc. General non-factorizing discrete distributions capable of representing complex statistical dependencies of structured discrete data, can be approximated by embedding the submanifold into a the meta-simplex of all joint discrete distributions and data-driven averaging. Efficient training of the generative model is demonstrated by matching the flow of geodesics of factorizing discrete distributions. Various experiments underline the approach's broad applicability.
This paper considers learning the hidden causal network of a linear networked dynamical system (NDS) from the time series data at some of its nodes -- partial observability. The dynamics of the NDS are driven by colored noise that generates spurious associations across pairs of nodes, rendering the problem much harder. To address the challenge of noise correlation and partial observability, we assign to each pair of nodes a feature vector computed from the time series data of observed nodes. The feature embedding is engineered to yield structural consistency: there exists an affine hyperplane that consistently partitions the set of features, separating the feature vectors corresponding to connected pairs of nodes from those corresponding to disconnected pairs. The causal inference problem is thus addressed via clustering the designed features. We demonstrate with simple baseline supervised methods the competitive performance of the proposed causal inference mechanism under broad connectivity regimes and noise correlation levels, including a real world network. Further, we devise novel technical guarantees of structural consistency for linear NDS under the considered regime.
Given its widespread application in machine learning and optimization, the Kronecker product emerges as a pivotal linear algebra operator. However, its computational demands render it an expensive operation, leading to heightened costs in spectral approximation of it through traditional computation algorithms. Existing classical methods for spectral approximation exhibit a linear dependency on the matrix dimension denoted by $n$, considering matrices of size $A_1 \in \mathbb{R}^{n \times d}$ and $A_2 \in \mathbb{R}^{n \times d}$. Our work introduces an innovative approach to efficiently address the spectral approximation of the Kronecker product $A_1 \otimes A_2$ using quantum methods. By treating matrices as quantum states, our proposed method significantly reduces the time complexity of spectral approximation to $O_{d,\epsilon}(\sqrt{n})$.
The aim of this workshop is to bring together experts working on open-domain dialogue research. In this speedily advancing research area many challenges still exist, such as learning information from conversations, engaging in realistic and convincing simulation of human intelligence and reasoning. SCI-CHAT follows previous workshops on open domain dialogue but with a focus on the simulation of intelligent conversation as judged in a live human evaluation. Models aim to include the ability to follow a challenging topic over a multi-turn conversation, while positing, refuting and reasoning over arguments. The workshop included both a research track and shared task. The main goal of this paper is to provide an overview of the shared task and a link to an additional paper that will include an in depth analysis of the shared task results following presentation at the workshop.
The term Data Space, understood as the secure exchange of data in distributed systems, ensuring openness, transparency, decentralization, sovereignty, and interoperability of information, has gained importance during the last years. However, Data Spaces are in an initial phase of definition, and new research is necessary to address their requirements. The Open Data ecosystem can be understood as one of the precursors of Data Spaces as it provides mechanisms to ensure the interoperability of information through resource discovery, information exchange, and aggregation via metadata. However, Data Spaces require more advanced capabilities including the automatic and scalable generation and publication of high-quality metadata. In this work, we present a set of software tools that facilitate the automatic generation and publication of metadata, the modeling of datasets through standards, and the assessment of the quality of the generated metadata. We validate all these tools through the YODA Open Data Portal showing how they can be connected to integrate Open Data into Data Spaces.
We present a novel approach to exploring innovation problem and solution domains using LLM fine-tuning with a custom idea database. By semantically traversing the bi-directional problem and solution tree at different temperature levels we achieve high diversity in solution edit distance while still remaining close to the original problem statement semantically. In addition to finding a variety of solutions to a given problem, this method can also be used to refine and clarify the original problem statement. As further validation of the approach, we implemented a proof-of-concept Slack bot to serve as an innovation assistant.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.