亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new kernelization tool, called rainbow matching technique}, that is appropriate for the design of polynomial kernels for packing problems and their hitting counterparts. Our technique capitalizes on the powerful combinatorial results of [Graf, Harris, Haxell, SODA 2021]. We apply the rainbow matching technique on four (di)graph packing or hitting problems, namely the Triangle-Packing in Tournament problem (TPT), where we ask for a packing of $k$ directed triangles in a tournament, Directed Feedback Vertex Set in Tournament problem (FVST), where we ask for a (hitting) set of at most $k$ vertices which intersects all triangles of a tournament, the Induced 2-Path-Packing (IPP) where we ask for a packing of $k$ induced paths of length two in a graph and Induced 2-Path Hitting Set problem (IPHS), where we ask for a (hitting) set of at most $k$ vertices which intersects all induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [Fomin, Le, Lokshtanov, Saurabh, Thomass\'e, Zehavi. ACM Trans. Algorithms, 2019], where they gave a kernel of $O(k^{3/2})$ vertices for the two first problems and $O(k^{5/3})$ vertices for the two last. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that TPT and FVST admit (almost linear) kernels of $k^{1+\frac{O(1)}{\sqrt{\log{k}}}}$ vertices and that IPP and IPHS admit kernels of $O(k)$ vertices.

相關內容

While multilinear algebra appears natural for studying the multiway interactions modeled by hypergraphs, tensor methods for general hypergraphs have been stymied by theoretical and practical barriers. A recently proposed adjacency tensor is applicable to nonuniform hypergraphs, but is prohibitively costly to form and analyze in practice. We develop tensor times same vector (TTSV) algorithms for this tensor which improve complexity from $O(n^r)$ to a low-degree polynomial in $r$, where $n$ is the number of vertices and $r$ is the maximum hyperedge size. Our algorithms are implicit, avoiding formation of the order $r$ adjacency tensor. We demonstrate the flexibility and utility of our approach in practice by developing tensor-based hypergraph centrality and clustering algorithms. We also show these tensor measures offer complementary information to analogous graph-reduction approaches on data, and are also able to detect higher-order structure that many existing matrix-based approaches provably cannot.

This paper considers two well-studied problems \textsc{Minimum Fill-In} (\textsc{Min Fill-In}) and \textsc{Treewidth}. Since both problems are \textsf{NP}-hard, various reduction rules simplifying an input graph have been intensively studied to better understand the structural properties relevant to these problems. Bodlaender at el. introduced the concept of a safe edge that is included in a solution of the \textsc{Minimum Fill-In} problem and showed some initial results. In this paper, we extend their result and prove a new condition for an edge set to be safe. This in turn helps us to construct a novel reduction tool for \textsc{Min Fill-In} that we use to answer other questions related to the problem. In this paper, we also study another interesting research question: Whether there exists a triangulation that answers both problems \textsc{Min Fill-In} and \textsc{Treewidth}. To formalise our study, we introduce a new parameter reflecting a distance of triangulations optimising both problems. We present some initial results regarding this parameter and study graph classes where both problems can be solved with one triangulation.

In this paper we investigate the existence of subexponential parameterized algorithms of three fundamental cycle-hitting problems in geometric graph classes. The considered problems, \textsc{Triangle Hitting} (TH), \textsc{Feedback Vertex Set} (FVS), and \textsc{Odd Cycle Transversal} (OCT) ask for the existence in a graph $G$ of a set $X$ of at most $k$ vertices such that $G-X$ is, respectively, triangle-free, acyclic, or bipartite. Such subexponential parameterized algorithms are known to exist in planar and even $H$-minor free graphs from bidimensionality theory [Demaine et al., JACM 2005], and there is a recent line of work lifting these results to geometric graph classes consisting of intersection of "fat" objects ([Grigoriev et al., FOCS 2022] and [Lokshtanov et al., SODA 2022]). In this paper we focus on "thin" objects by considering intersection graphs of segments in the plane with $d$ possible slopes ($d$-DIR graphs) and contact graphs of segments in the plane. Assuming the ETH, we rule out the existence of algorithms: - solving TH in time $2^{o(n)}$ in 2-DIR graphs; and - solving TH, FVS, and OCT in time $2^{o(\sqrt{n})}$ in $K_{2,2}$-free contact 2-DIR graphs. These results indicate that additional restrictions are necessary in order to obtain subexponential parameterized algorithms for %these problems. In this direction we provide: - a $2^{O(k^{3/4}\cdot \log k)}n^{O(1)}$-time algorithm for FVS in contact segment graphs; - a $2^{O(\sqrt d\cdot t^2 \log t\cdot k^{2/3}\log k)} n^{O(1)}$-time algorithm for TH in $K_{t,t}$-free $d$-DIR graphs; and - a $2^{O(k^{7/9}\log^{3/2}k)} n^{O(1)}$-time algorithm for TH in contact segment graphs.

In this paper, practically computable low-order approximations of potentially high-dimensional differential equations driven by geometric rough paths are proposed and investigated. In particular, equations are studied that cover the linear setting, but we allow for a certain type of dissipative nonlinearity in the drift as well. In a first step, a linear subspace is found that contains the solution space of the underlying rough differential equation (RDE). This subspace is associated to covariances of linear Ito-stochastic differential equations which is shown exploiting a Gronwall lemma for matrix differential equations. Orthogonal projections onto the identified subspace lead to a first exact reduced order system. Secondly, a linear map of the RDE solution (quantity of interest) is analyzed in terms of redundant information meaning that state variables are found that do not contribute to the quantity of interest. Once more, a link to Ito-stochastic differential equations is used. Removing such unnecessary information from the RDE provides a further dimension reduction without causing an error. Finally, we discretize a linear parabolic rough partial differential equation in space. The resulting large-order RDE is subsequently tackled with the exact reduction techniques studied in this paper. We illustrate the enormous complexity reduction potential in the corresponding numerical experiments.

Minimax problems arise in a wide range of important applications including robust adversarial learning and Generative Adversarial Network (GAN) training. Recently, algorithms for minimax problems in the Federated Learning (FL) paradigm have received considerable interest. Existing federated algorithms for general minimax problems require the full aggregation (i.e., aggregation of local model information from all clients) in each training round. Thus, they are inapplicable to an important setting of FL known as the cross-device setting, which involves numerous unreliable mobile/IoT devices. In this paper, we develop the first practical algorithm named CDMA for general minimax problems in the cross-device FL setting. CDMA is based on a Start-Immediately-With-Enough-Responses mechanism, in which the server first signals a subset of clients to perform local computation and then starts to aggregate the local results reported by clients once it receives responses from enough clients in each round. With this mechanism, CDMA is resilient to the low client availability. In addition, CDMA is incorporated with a lightweight global correction in the local update steps of clients, which mitigates the impact of slow network connections. We establish theoretical guarantees of CDMA under different choices of hyperparameters and conduct experiments on AUC maximization, robust adversarial network training, and GAN training tasks. Theoretical and experimental results demonstrate the efficiency of CDMA.

Many isomorphism problems for tensors, groups, algebras, and polynomials were recently shown to be equivalent to one another under polynomial-time reductions, prompting the introduction of the complexity class TI (Grochow & Qiao, ITCS '21; SIAM J. Comp., '23). Using the tensorial viewpoint, Grochow & Qiao (CCC '21) then gave moderately exponential-time search- and counting-to-decision reductions for a class of $p$-groups. A significant issue was that the reductions usually incurred a quadratic increase in the length of the tensors involved. When the tensors represent $p$-groups, this corresponds to an increase in the order of the group of the form $|G|^{\Theta(\log |G|)}$, negating any asymptotic gains in the Cayley table model. In this paper, we present a new kind of tensor gadget that allows us to replace those quadratic-length reductions with linear-length ones, yielding the following consequences: 1. Combined with the recent breakthrough $|G|^{O((\log |G|)^{5/6})}$-time isomorphism-test for $p$-groups of class 2 and exponent $p$ (Sun, STOC '23), our reductions extend this runtime to $p$-groups of class $c$ and exponent $p$ where $c<p$. 2. Our reductions show that Sun's algorithm solves several TI-complete problems over $F_p$, such as isomorphism problems for cubic forms, algebras, and tensors, in time $p^{O(n^{1.8} \log p)}$. 3. Polynomial-time search- and counting-to-decision reduction for testing isomorphism of $p$-groups of class $2$ and exponent $p$ in the Cayley table model. This answers questions of Arvind and T\'oran (Bull. EATCS, 2005) for this group class, thought to be one of the hardest cases of Group Isomorphism. 4. If Graph Isomorphism is in P, then testing equivalence of cubic forms and testing isomorphism of algebra over a finite field $F_q$ can both be solved in time $q^{O(n)}$, improving from the brute-force upper bound $q^{O(n^2)}$.

Cartesian tree pattern matching consists of finding all the factors of a text that have the same Cartesian tree than a given pattern. There already exist theoretical and practical solutions for the exact case. In this paper, we propose the first algorithm for solving approximate Cartesian tree pattern matching. We consider Cartesian tree pattern matching with one swap: given a pattern of length m and a text of length n we present two algorithms that find all the factors of the text that have the same Cartesian tree of the pattern after one transposition of two adjacent symbols. The first algorithm uses a characterization of a linear representation of the Cartesian trees called parent-distance after one swap and runs in time Theta(mn) using Theta(m) space. The second algorithm generates all the parent-distance tables of sequences that have the same Cartesian tree than the pattern after one swap. It runs in time O((m^2 + n)log m) and has O(m^2) space complexity.

We study generalizations of online bipartite matching in which each arriving vertex (customer) views a ranked list of offline vertices (products) and matches to (purchases) the first one they deem acceptable. The number of products that the customer has patience to view can be stochastic and dependent on the products seen. We develop a framework that views the interaction with each customer as an abstract resource consumption process, and derive new results for these online matching problems under the adversarial, non-stationary, and IID arrival models, assuming we can (approximately) solve the product ranking problem for each single customer. To that end, we show new results for product ranking under two cascade-click models: an optimal algorithm when each item has its own hazard rate for making the customer depart, and a 1/2-approximate algorithm when the customer has a general item-independent patience distribution. We also present a constant-factor 0.027-approximate algorithm in a new model where items are not initially available and arrive over time. We complement these positive results by presenting three additional negative results relating to these problems.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司