亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the field of AI continues to evolve, a significant dimension of this progression is the development of Large Language Models and their potential to enhance multi-agent artificial intelligence systems. This paper explores the cooperative capabilities of Large Language Model-augmented Autonomous Agents (LAAs) using the well-known Meltin Pot environments along with reference models such as GPT4 and GPT3.5. Preliminary results suggest that while these agents demonstrate a propensity for cooperation, they still struggle with effective collaboration in given environments, emphasizing the need for more robust architectures. The study's contributions include an abstraction layer to adapt Melting Pot game scenarios for LLMs, the implementation of a reusable architecture for LLM-mediated agent development - which includes short and long-term memories and different cognitive modules, and the evaluation of cooperation capabilities using a set of metrics tied to the Melting Pot's "Commons Harvest" game. The paper closes, by discussing the limitations of the current architectural framework and the potential of a new set of modules that fosters better cooperation among LAAs.

相關內容

Regularized optimal transport (OT) has received much attention in recent years starting from Cuturi's paper with Kullback-Leibler (KL) divergence regularized OT. In this paper, we propose to regularize the OT problem using the family of $\alpha$-R\'enyi divergences for $\alpha \in (0, 1)$. R\'enyi divergences are neither $f$-divergences nor Bregman distances, but they recover the KL divergence in the limit $\alpha \nearrow 1$. The advantage of introducing the additional parameter $\alpha$ is that for $\alpha \searrow 0$ we obtain convergence to the unregularized OT problem. For the KL regularized OT problem, this was achieved by letting the regularization parameter tend to zero, which causes numerical instabilities. We present two different ways to obtain premetrics on probability measures, namely by R\'enyi divergence constraints and penalization. The latter premetric interpolates between the unregularized and KL regularized OT problem with weak convergence of the minimizer, generalizing the interpolating property of KL regularized OT. We use a nested mirror descent algorithm for solving the primal formulation. Both on real and synthetic data sets R\'enyi regularized OT plans outperform their KL and Tsallis counterparts in terms of being closer to the unregularized transport plans and recovering the ground truth in inference tasks better.

The sixth generation mobile communication standard (6G) can promote the development of Industrial Internet and Internet of Things (IoT). To achieve comprehensive intelligent development of the network and provide customers with higher quality personalized services. This paper proposes a network performance optimization and intelligent operation network architecture based on Large Language Model (LLM), aiming to build a comprehensive intelligent 6G network system. The Large Language Model, with more parameters and stronger learning ability, can more accurately capture patterns and features in data, which can achieve more accurate content output and high intelligence and provide strong support for related research such as network data security, privacy protection, and health assessment. This paper also presents the design framework of a network health assessment system based on LLM and focuses on its potential application value, through the case of network health management system, it is fully demonstrated that the 6G intelligent network system based on LLM has important practical significance for the comprehensive realization of intelligence.

Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.

We propose a time-dependent Advection Reaction Diffusion (ARD) $N$-species competition model to investigate the Stocking and Harvesting (SH) effect on population dynamics. For ongoing analysis, we explore the outcomes of a competition between two competing species in a heterogeneous environment under no-flux boundary conditions, meaning no individual can cross the boundaries. We establish results concerning the existence, uniqueness, and positivity of the solution. As a continuation, we propose, analyze, and test two novel fully discrete decoupled linearized algorithms for a nonlinearly coupled ARD $N$-species competition model with SH effort. The time-stepping algorithms are first and second order accurate in time and optimally accurate in space. Stability and optimal convergence theorems of the decoupled schemes are proved rigorously. We verify the predicted convergence rates of our analysis and the efficacy of the algorithms using numerical experiments and synthetic data for analytical test problems. We also study the effect of harvesting or stocking and diffusion parameters on the evolution of species population density numerically and observe the coexistence scenario subject to optimal stocking or harvesting.

Generalizable NeRF aims to synthesize novel views for unseen scenes. Common practices involve constructing variance-based cost volumes for geometry reconstruction and encoding 3D descriptors for decoding novel views. However, existing methods show limited generalization ability in challenging conditions due to inaccurate geometry, sub-optimal descriptors, and decoding strategies. We address these issues point by point. First, we find the variance-based cost volume exhibits failure patterns as the features of pixels corresponding to the same point can be inconsistent across different views due to occlusions or reflections. We introduce an Adaptive Cost Aggregation (ACA) approach to amplify the contribution of consistent pixel pairs and suppress inconsistent ones. Unlike previous methods that solely fuse 2D features into descriptors, our approach introduces a Spatial-View Aggregator (SVA) to incorporate 3D context into descriptors through spatial and inter-view interaction. When decoding the descriptors, we observe the two existing decoding strategies excel in different areas, which are complementary. A Consistency-Aware Fusion (CAF) strategy is proposed to leverage the advantages of both. We incorporate the above ACA, SVA, and CAF into a coarse-to-fine framework, termed Geometry-aware Reconstruction and Fusion-refined Rendering (GeFu). GeFu attains state-of-the-art performance across multiple datasets. Code is available at //github.com/TQTQliu/GeFu .

Meeting the strict Quality of Service (QoS) requirements of terminals has imposed a signiffcant challenge on Multiaccess Edge Computing (MEC) systems, due to the limited multidimensional resources. To address this challenge, we propose a collaborative MEC framework that facilitates resource sharing between the edge servers, and with the aim to maximize the long-term QoS and reduce the cache switching cost through joint optimization of service caching, collaborative offfoading, and computation and communication resource allocation. The dual timescale feature and temporal recurrence relationship between service caching and other resource allocation make solving the problem even more challenging. To solve it, we propose a deep reinforcement learning (DRL)-based dual timescale scheme, called DGL-DDPG, which is composed of a short-term genetic algorithm (GA) and a long short-term memory network-based deep deterministic policy gradient (LSTM-DDPG). In doing so, we reformulate the optimization problem as a Markov decision process (MDP) where the small-timescale resource allocation decisions generated by an improved GA are taken as the states and input into a centralized LSTM-DDPG agent to generate the service caching decision for the large-timescale. Simulation results demonstrate that our proposed algorithm outperforms the baseline algorithms in terms of the average QoS and cache switching cost.

Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV) by synthesizing augmented datasets, completing sensor data, and making sequential decisions. In addition, the mixture of experts (MoE) can enable the distributed and collaborative execution of AI models without performance degradation between connected vehicles. In this survey, we explore the integration of MoE and GAI to enable Artificial General Intelligence in IoV, which can enable the realization of full autonomy for IoV with minimal human supervision and applicability in a wide range of mobility scenarios, including environment monitoring, traffic management, and autonomous driving. In particular, we present the fundamentals of GAI, MoE, and their interplay applications in IoV. Furthermore, we discuss the potential integration of MoE and GAI in IoV, including distributed perception and monitoring, collaborative decision-making and planning, and generative modeling and simulation. Finally, we present several potential research directions for facilitating the integration.

In the current digital security ecosystem, where threats evolve rapidly and with complexity, companies developing Endpoint Detection and Response (EDR) solutions are in constant search for innovations that not only keep up but also anticipate emerging attack vectors. In this context, this article introduces the HookChain, a look from another perspective at widely known techniques, which when combined, provide an additional layer of sophisticated evasion against traditional EDR systems. Through a precise combination of IAT Hooking techniques, dynamic SSN resolution, and indirect system calls, HookChain redirects the execution flow of Windows subsystems in a way that remains invisible to the vigilant eyes of EDRs that only act on Ntdll.dll, without requiring changes to the source code of the applications and malwares involved. This work not only challenges current conventions in cybersecurity but also sheds light on a promising path for future protection strategies, leveraging the understanding that continuous evolution is key to the effectiveness of digital security. By developing and exploring the HookChain technique, this study significantly contributes to the body of knowledge in endpoint security, stimulating the development of more robust and adaptive solutions that can effectively address the ever-changing dynamics of digital threats. This work aspires to inspire deep reflection and advancement in the research and development of security technologies that are always several steps ahead of adversaries.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司