Accurate face recognition systems are increasingly important in sensitive applications like border control or migration management. Therefore, it becomes crucial to quantify the quality of facial images to ensure that low-quality images are not affecting recognition accuracy. In this context, the current draft of ISO/IEC 29794-5 introduces the concept of component quality to estimate how single factors of variation affect recognition outcomes. In this study, we propose a quality measure (NeutrEx) based on the accumulated distances of a 3D face reconstruction to a neutral expression anchor. Our evaluations demonstrate the superiority of our proposed method compared to baseline approaches obtained by training Support Vector Machines on face embeddings extracted from a pre-trained Convolutional Neural Network for facial expression classification. Furthermore, we highlight the explainable nature of our NeutrEx measures by computing per-vertex distances to unveil the most impactful face regions and allow operators to give actionable feedback to subjects.
Medical image segmentation methods are generally designed as fully-supervised to guarantee model performance, which require a significant amount of expert annotated samples that are high-cost and laborious. Semi-supervised image segmentation can alleviate the problem by utilizing a large number of unlabeled images along with limited labeled images. However, learning a robust representation from numerous unlabeled images remains challenging due to potential noise in pseudo labels and insufficient class separability in feature space, which undermines the performance of current semi-supervised segmentation approaches. To address the issues above, we propose a novel semi-supervised segmentation method named as Rectified Contrastive Pseudo Supervision (RCPS), which combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation. Particularly, we design a novel rectification strategy for the pseudo supervision method based on uncertainty estimation and consistency regularization to reduce the noise influence in pseudo labels. Furthermore, we introduce a bidirectional voxel contrastive loss to the network to ensure intra-class consistency and inter-class contrast in feature space, which increases class separability in the segmentation. The proposed RCPS segmentation method has been validated on two public datasets and an in-house clinical dataset. Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation. The source code is available at //github.com/hsiangyuzhao/RCPS.
The coexistence between active wireless communications and passive RF spectrum use becomes an increasingly important requirement for coordinated spectrum access supporting critical services. The ongoing research and technological progress are focused on effective spectrum utilization including large-scale MIMO and energy efficient and low-power communications, innovative spectrum use and management, and resilient spectrum sharing, just to name a few. This paper introduces a new tool for real time spectrum sharing among emerging cellular networks and passive RF sensing systems used for remote sensing and radio astronomy, among others. Specifically we propose leveraging wireless channel virtualization and propose a virtual-to-physical resource mapping framework, mapping types, and control signaling that extends the current 5G New Radio (NR) specifications. Our technology introduces minimal changes to the protocol and is meant to be transparent to the end user application. We validate the proposed technology by extending a 3GPP compliant 5G NR downlink simulator and identify further research directions where work is needed on designing effective ways to explicitly signal the need for spectrum or spectrum use predictions.
Vision-based perception modules are increasingly deployed in many applications, especially autonomous vehicles and intelligent robots. These modules are being used to acquire information about the surroundings and identify obstacles. Hence, accurate detection and classification are essential to reach appropriate decisions and take appropriate and safe actions at all times. Current studies have demonstrated that "printed adversarial attacks", known as physical adversarial attacks, can successfully mislead perception models such as object detectors and image classifiers. However, most of these physical attacks are based on noticeable and eye-catching patterns for generated perturbations making them identifiable/detectable by human eye or in test drives. In this paper, we propose a camera-based inconspicuous adversarial attack (\textbf{AdvRain}) capable of fooling camera-based perception systems over all objects of the same class. Unlike mask based fake-weather attacks that require access to the underlying computing hardware or image memory, our attack is based on emulating the effects of a natural weather condition (i.e., Raindrops) that can be printed on a translucent sticker, which is externally placed over the lens of a camera. To accomplish this, we provide an iterative process based on performing a random search aiming to identify critical positions to make sure that the performed transformation is adversarial for a target classifier. Our transformation is based on blurring predefined parts of the captured image corresponding to the areas covered by the raindrop. We achieve a drop in average model accuracy of more than $45\%$ and $40\%$ on VGG19 for ImageNet and Resnet34 for Caltech-101, respectively, using only $20$ raindrops.
Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that $\textit{Starman}$ achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at $\href{//github.com/uncbiag/NAISR}{//github.com/uncbiag/NAISR}$.
Tracking subjects in videos is one of the most widely used functions in camera-based IoT applications such as security surveillance, smart city traffic safety enhancement, vehicle to pedestrian communication and so on. In the computer vision domain, tracking is usually achieved by first detecting subjects with bounding boxes, then associating detected bounding boxes across video frames. For many IoT systems, images captured by cameras are usually sent over the network to be processed at a different site that has more powerful computing resources than edge devices. However, sending entire frames through the network causes significant bandwidth consumption that may exceed the system bandwidth constraints. To tackle this problem, we propose ViFiT, a transformer-based model that reconstructs vision bounding box trajectories from phone data (IMU and Fine Time Measurements). It leverages a transformer ability of better modeling long-term time series data. ViFiT is evaluated on Vi-Fi Dataset, a large-scale multimodal dataset in 5 diverse real world scenes, including indoor and outdoor environments. To fill the gap of proper metrics of jointly capturing the system characteristics of both tracking quality and video bandwidth reduction, we propose a novel evaluation framework dubbed Minimum Required Frames (MRF) and Minimum Required Frames Ratio (MRFR). ViFiT achieves an MRFR of 0.65 that outperforms the state-of-the-art approach for cross-modal reconstruction in LSTM Encoder-Decoder architecture X-Translator of 0.98, resulting in a high frame reduction rate as 97.76%.
Recent developments in large language models (LLMs) have shown promise in enhancing the capabilities of natural language processing (NLP). Despite these successes, there remains a dearth of research dedicated to the NLP problem-solving abilities of LLMs. To fill the gap in this area, we present a unique benchmarking dataset, NLPBench, comprising 378 college-level NLP questions spanning various NLP topics sourced from Yale University's prior final exams. NLPBench includes questions with context, in which multiple sub-questions share the same public information, and diverse question types, including multiple choice, short answer, and math. Our evaluation, centered on LLMs such as GPT-3.5/4, PaLM-2, and LLAMA-2, incorporates advanced prompting strategies like the chain-of-thought (CoT) and tree-of-thought (ToT). Our study reveals that the effectiveness of the advanced prompting strategies can be inconsistent, occasionally damaging LLM performance, especially in smaller models like the LLAMA-2 (13b). Furthermore, our manual assessment illuminated specific shortcomings in LLMs' scientific problem-solving skills, with weaknesses in logical decomposition and reasoning notably affecting results.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.