Traditional approaches to urban income segregation focus on static residential patterns, often failing to capture the dynamic nature of social mixing at the neighborhood level. Leveraging high-resolution location-based data from mobile phones, we capture the interplay of three different income groups (high, medium, low) based on their daily routines. We propose a three-dimensional space to analyze social mixing, which is embedded in the temporal dynamics of urban activities. This framework offers a more detailed perspective on social interactions, closely linked to the geographical features of each neighborhood. While residential areas fail to encourage social mixing in the nighttime, the working hours foster inclusion, with the city center showing a heightened level of interaction. As evening sets in, leisure areas emerge as potential facilitators for social interactions, depending on urban features such as public transport and a variety of Points Of Interest. These characteristics significantly modulate the magnitude and type of social stratification involved in social mixing, also underscoring the significance of urban design in either bridging or widening socio-economic divides.
A simple way of obtaining robust estimates of the "center" (or the "location") and of the "scatter" of a dataset is to use the maximum likelihood estimate with a class of heavy-tailed distributions, regardless of the "true" distribution generating the data. We observe that the maximum likelihood problem for the Cauchy distributions, which have particularly heavy tails, is geodesically convex and therefore efficiently solvable (Cauchy distributions are parametrized by the upper half plane, i.e. by the hyperbolic plane). Moreover, it has an appealing geometrical meaning: the datapoints, living on the boundary of the hyperbolic plane, are attracting the parameter by unit forces, and we search the point where these forces are in equilibrium. This picture generalizes to several classes of multivariate distributions with heavy tails, including, in particular, the multivariate Cauchy distributions. The hyperbolic plane gets replaced by symmetric spaces of noncompact type. Geodesic convexity gives us an efficient numerical solution of the maximum likelihood problem for these distribution classes. This can then be used for robust estimates of location and spread, thanks to the heavy tails of these distributions.
Selection models are ubiquitous in statistics. In recent years, they have regained considerable popularity as the working inferential models in many selective inference problems. In this paper, we derive an asymptotic expansion of the local likelihood ratios of selection models. We show that under mild regularity conditions, they are asymptotically equivalent to a sequence of Gaussian selection models. This generalizes the Local Asymptotic Normality framework of Le Cam (1960). Furthermore, we derive the asymptotic shape of Bayesian posterior distributions constructed from selection models, and show that they can be significantly miscalibrated in a frequentist sense.
The interpretation of vaccine efficacy estimands is subtle, even in randomized trials designed to quantify immunological effects of vaccination. In this article, we introduce terminology to distinguish between different vaccine efficacy estimands and clarify their interpretations. This allows us to explicitly consider immunological and behavioural effects of vaccination, and establish that policy-relevant estimands can differ substantially from those commonly reported in vaccine trials. We further show that a conventional vaccine trial allows identification and estimation of different vaccine estimands under plausible conditions, if one additional post-treatment variable is measured. Specifically, we utilize a ``belief variable'' that indicates the treatment an individual believed they had received. The belief variable is similar to ``blinding assessment'' variables that are occasionally collected in placebo-controlled trials in other fields. We illustrate the relations between the different estimands, and their practical relevance, in numerical examples based on an influenza vaccine trial.
Factor models have been widely used to summarize the variability of high-dimensional data through a set of factors with much lower dimensionality. Gaussian linear factor models have been particularly popular due to their interpretability and ease of computation. However, in practice, data often violate the multivariate Gaussian assumption. To characterize higher-order dependence and nonlinearity, models that include factors as predictors in flexible multivariate regression are popular, with GP-LVMs using Gaussian process (GP) priors for the regression function and VAEs using deep neural networks. Unfortunately, such approaches lack identifiability and interpretability and tend to produce brittle and non-reproducible results. To address these problems by simplifying the nonparametric factor model while maintaining flexibility, we propose the NIFTY framework, which parsimoniously transforms uniform latent variables using one-dimensional nonlinear mappings and then applies a linear generative model. The induced multivariate distribution falls into a flexible class while maintaining simple computation and interpretation. We prove that this model is identifiable and empirically study NIFTY using simulated data, observing good performance in density estimation and data visualization. We then apply NIFTY to bird song data in an environmental monitoring application.
Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.
In evidence synthesis, effect modifiers are typically described as variables that induce treatment effect heterogeneity at the individual level, through treatment-covariate interactions in an outcome model parametrized at such level. As such, effect modification is defined with respect to a conditional measure, but marginal effect estimates are required for population-level decisions in health technology assessment. For non-collapsible measures, purely prognostic variables that are not determinants of treatment response at the individual level may modify marginal effects, even where there is individual-level treatment effect homogeneity. With heterogeneity, marginal effects for measures that are not directly collapsible cannot be expressed in terms of marginal covariate moments, and generally depend on the joint distribution of conditional effect measure modifiers and purely prognostic variables. There are implications for recommended practices in evidence synthesis. Unadjusted anchored indirect comparisons can be biased in the absence of individual-level treatment effect heterogeneity, or when marginal covariate moments are balanced across studies. Covariate adjustment may be necessary to account for cross-study imbalances in joint covariate distributions involving purely prognostic variables. In the absence of individual patient data for the target, covariate adjustment approaches are inherently limited in their ability to remove bias for measures that are not directly collapsible. Directly collapsible measures would facilitate the transportability of marginal effects between studies by: (1) reducing dependence on model-based covariate adjustment where there is individual-level treatment effect homogeneity and marginal covariate moments are balanced; and (2) facilitating the selection of baseline covariates for adjustment where there is individual-level treatment effect heterogeneity.
Ground settlement prediction during the process of mechanized tunneling is of paramount importance and remains a challenging research topic. Typically, two paradigms are existing: a physics-driven approach utilizing process-oriented computational simulation models for the tunnel-soil interaction and the settlement prediction, and a data-driven approach employing machine learning techniques to establish mappings between influencing factors and the ground settlement. To integrate the advantages of both approaches and to assimilate the data from different sources, we propose a multi-fidelity deep operator network (DeepONet) framework, leveraging the recently developed operator learning methods. The presented framework comprises of two components: a low-fidelity subnet that captures the fundamental ground settlement patterns obtained from finite element simulations, and a high-fidelity subnet that learns the nonlinear correlation between numerical models and real engineering monitoring data. A pre-processing strategy for causality is adopted to consider the spatio-temporal characteristics of the settlement during tunnel excavation. Transfer learning is utilized to reduce the training cost for the low-fidelity subnet. The results show that the proposed method can effectively capture the physical information provided by the numerical simulations and accurately fit measured data as well. Remarkably, even with very limited noisy monitoring data, the proposed model can achieve rapid, accurate, and robust predictions of the full-field ground settlement in real-time during mechanized tunnel excavation.
We extend a Discrete Time Random Walk (DTRW) numerical scheme to simulate the anomalous diffusion of financial market orders in a simulated order book. Here using random walks with Sibuya waiting times to include a time-dependent stochastic forcing function with non-uniformly sampled times between order book events in the setting of fractional diffusion. This models the fluid limit of an order book by modelling the continuous arrival, cancellation and diffusion of orders in the presence of information shocks. We study the impulse response and stylised facts of orders undergoing anomalous diffusion for different forcing functions and model parameters. Concretely, we demonstrate the price impact for flash limit-orders and market orders and show how the numerical method generate kinks in the price impact. We use cubic spline interpolation to generate smoothed price impact curves. The work promotes the use of non-uniform sampling in the presence of diffusive dynamics as the preferred simulation method.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-tailed sensing and communication noises. We allow that the sensing and communication noises are mutually correlated while independent identically distributed (i.i.d.) in time, and that they may both have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet of things (IoT) deployments. We develop a consensus+innovations distributed estimator that employs a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the estimator's almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate. We then quantify through analytical examples the effects of the nonlinearity choices and the noises correlation on the system performance. Finally, numerical examples corroborate our findings and verify that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting, while existing methods fail under the same noise conditions.