亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In multi-agent robotic exploration, managing and effectively utilizing the vast, heterogeneous data generated from dynamic environments poses a significant challenge. Federated learning (FL) is a promising approach for distributed mapping, addressing the challenges of decentralized data in collaborative learning. FL enables joint model training across multiple agents without requiring the centralization or sharing of raw data, overcoming bandwidth and storage constraints. Our approach leverages implicit neural mapping, representing maps as continuous functions learned by neural networks, for compact and adaptable representations. We further enhance this approach with meta-initialization on Earth datasets, pre-training the network to quickly learn new map structures. This combination demonstrates strong generalization to diverse domains like Martian terrain and glaciers. We rigorously evaluate this approach, demonstrating its effectiveness for real-world deployment in multi-agent exploration scenarios.

相關內容

As a novel privacy-preserving paradigm aimed at reducing client computational costs and achieving data utility, split learning has garnered extensive attention and proliferated widespread applications across various fields, including smart health and smart transportation, among others. While recent studies have primarily concentrated on addressing privacy leakage concerns in split learning, such as inference attacks and data reconstruction, the exploration of security issues (e.g., backdoor attacks) within the framework of split learning has been comparatively limited. Nonetheless, the security vulnerability within the context of split learning is highly posing a threat and can give rise to grave security implications, such as the illegal impersonation in the face recognition model. Therefore, in this paper, we propose a stealthy backdoor attack strategy (namely SBAT) tailored to the without-label-sharing split learning architecture, which unveils the inherent security vulnerability of split learning. We posit the existence of a potential attacker on the server side aiming to introduce a backdoor into the training model, while exploring two scenarios: one with known client network architecture and the other with unknown architecture. Diverging from traditional backdoor attack methods that manipulate the training data and labels, we constructively conduct the backdoor attack by injecting the trigger embedding into the server network. Specifically, our SBAT achieves a higher level of attack stealthiness by refraining from modifying any intermediate parameters (e.g., gradients) during training and instead executing all malicious operations post-training.

Energy storage devices, such as batteries, thermal energy storages, and hydrogen systems, can help mitigate climate change by ensuring a more stable and sustainable power supply. To maximize the effectiveness of such energy storage, determining the appropriate charging and discharging amounts for each time period is crucial. Reinforcement learning is preferred over traditional optimization for the control of energy storage due to its ability to adapt to dynamic and complex environments. However, the continuous nature of charging and discharging levels in energy storage poses limitations for discrete reinforcement learning, and time-varying feasible charge-discharge range based on state of charge (SoC) variability also limits the conventional continuous reinforcement learning. In this paper, we propose a continuous reinforcement learning approach that takes into account the time-varying feasible charge-discharge range. An additional objective function was introduced for learning the feasible action range for each time period, supplementing the objectives of training the actor for policy learning and the critic for value learning. This actively promotes the utilization of energy storage by preventing them from getting stuck in suboptimal states, such as continuous full charging or discharging. This is achieved through the enforcement of the charging and discharging levels into the feasible action range. The experimental results demonstrated that the proposed method further maximized the effectiveness of energy storage by actively enhancing its utilization.

Addressing the challenge of low-resource information extraction remains an ongoing issue due to the inherent information scarcity within limited training examples. Existing data augmentation methods, considered potential solutions, struggle to strike a balance between weak augmentation (e.g., synonym augmentation) and drastic augmentation (e.g., conditional generation without proper guidance). This paper introduces a novel paradigm that employs targeted augmentation and back validation to produce augmented examples with enhanced diversity, polarity, accuracy, and coherence. Extensive experimental results demonstrate the effectiveness of the proposed paradigm. Furthermore, identified limitations are discussed, shedding light on areas for future improvement.

We consider the problem of distilling efficient network topologies for collective communications. We provide an algorithmic framework for constructing direct-connect topologies optimized for the latency vs. bandwidth trade-off associated with the workload. Our approach synthesizes many different topologies and schedules for a given cluster size and degree and then identifies the appropriate topology and schedule for a given workload. Our algorithms start from small, optimal base topologies and associated communication schedules and use techniques that can be iteratively applied to derive much larger topologies and schedules. Additionally, we incorporate well-studied large-scale graph topologies into our algorithmic framework by producing efficient collective schedules for them using a novel polynomial-time algorithm. Our evaluation uses multiple testbeds and large-scale simulations to demonstrate significant performance benefits from our derived topologies and schedules.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

北京阿比特科技有限公司