Synthetic data generation is increasingly recognized as a crucial solution to address data related challenges such as scarcity, bias, and privacy concerns. As synthetic data proliferates, the need for a robust evaluation framework to select a synthetic data generator becomes more pressing given the variety of options available. In this research study, we investigate two primary questions: 1) How can we select the most suitable synthetic data generator from a set of options for a specific purpose? 2) How can we make the selection process more transparent, accountable, and auditable? To address these questions, we introduce a novel approach in which the proposed ranking algorithm is implemented as a smart contract within a permissioned blockchain framework called Sawtooth. Through comprehensive experiments and comparisons with state-of-the-art baseline ranking solutions, our framework demonstrates its effectiveness in providing nuanced rankings that consider both desirable and undesirable properties. Furthermore, our framework serves as a valuable tool for selecting the optimal synthetic data generators for specific needs while ensuring compliance with data protection principles.
Structured tabular data is a fundamental data type in numerous fields, and the capacity to reason over tables is crucial for answering questions and validating hypotheses. However, constructing labeled data for complex reasoning tasks is labor intensive, and the quantity of annotated data remains insufficient to support the intricate demands of real-world applications. To address the insufficient annotation challenge, we present a self-training framework for unsupervised complex tabular reasoning (UCTR-ST) by generating diverse synthetic data with complex logic. Specifically, UCTR-ST incorporates several essential techniques: we aggregate diverse programs and execute them on tables based on a "Program-Management" component, and we bridge the gap between programs and text with a powerful "Program-Transformation" module that generates natural language sentences with complex logic. Furthermore, we optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios. The entire framework utilizes self-training techniques to leverage the unlabeled training data, which results in significant performance improvements when tested on real-world data. Experimental results demonstrate that UCTRST achieves above 90% of the supervised model performance on different tasks and domains, reducing the dependence on manual annotation. Additionally, our approach can serve as a data augmentation technique, significantly boosting the performance of supervised models in low-resourced domains.
Analyzing sequential data is crucial in many domains, particularly due to the abundance of data collected from the Internet of Things paradigm. Time series classification, the task of categorizing sequential data, has gained prominence, with machine learning approaches demonstrating remarkable performance on public benchmark datasets. However, progress has primarily been in designing architectures for learning representations from raw data at fixed (or ideal) time scales, which can fail to generalize to longer sequences. This work introduces a \textit{compositional representation learning} approach trained on statistically coherent components extracted from sequential data. Based on a multi-scale change space, an unsupervised approach is proposed to segment the sequential data into chunks with similar statistical properties. A sequence-based encoder model is trained in a multi-task setting to learn compositional representations from these temporal components for time series classification. We demonstrate its effectiveness through extensive experiments on publicly available time series classification benchmarks. Evaluating the coherence of segmented components shows its competitive performance on the unsupervised segmentation task.
Label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and CVDs detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing model computational efficiency. Here, we propose a computation-efficient semi-supervised learning paradigm (FastECG) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream ECG datasets demonstrate that FastECG not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision.
In the scenario-based evaluation of machine learning models, a key problem is how to construct test datasets that represent various scenarios. The methodology proposed in this paper is to construct a benchmark and attach metadata to each test case. Then a test system can be constructed with test morphisms that filter the test cases based on metadata to form a dataset. The paper demonstrates this methodology with large language models for code generation. A benchmark called ScenEval is constructed from problems in textbooks, an online tutorial website and Stack Overflow. Filtering by scenario is demonstrated and the test sets are used to evaluate ChatGPT for Java code generation. Our experiments found that the performance of ChatGPT decreases with the complexity of the coding task. It is weakest for advanced topics like multi-threading, data structure algorithms and recursive methods. The Java code generated by ChatGPT tends to be much shorter than reference solution in terms of number of lines, while it is more likely to be more complex in both cyclomatic and cognitive complexity metrics, if the generated code is correct. However, the generated code is more likely to be less complex than the reference solution if the code is incorrect.
Causal graph recovery is traditionally done using statistical estimation-based methods or based on individual's knowledge about variables of interests. They often suffer from data collection biases and limitations of individuals' knowledge. The advance of large language models (LLMs) provides opportunities to address these problems. We propose a novel method that leverages LLMs to deduce causal relationships in general causal graph recovery tasks. This method leverages knowledge compressed in LLMs and knowledge LLMs extracted from scientific publication database as well as experiment data about factors of interest to achieve this goal. Our method gives a prompting strategy to extract associational relationships among those factors and a mechanism to perform causality verification for these associations. Comparing to other LLM-based methods that directly instruct LLMs to do the highly complex causal reasoning, our method shows clear advantage on causal graph quality on benchmark datasets. More importantly, as causality among some factors may change as new research results emerge, our method show sensitivity to new evidence in the literature and can provide useful information for updating causal graphs accordingly.
As a staple of data analysis and unsupervised learning, the problem of private clustering has been widely studied under various privacy models. Centralized differential privacy is the first of them, and the problem has also been studied for the local and the shuffle variation. In each case, the goal is to design an algorithm that computes privately a clustering, with the smallest possible error. The study of each variation gave rise to new algorithms: the landscape of private clustering algorithms is therefore quite intricate. In this paper, we show that a 20-year-old algorithm can be slightly modified to work for any of these models. This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them and extend it to a new privacy model, the continual observation setting, where the input is changing over time and the algorithm must output a new solution at each time step.
Diffusion models have become the de-facto approach for generating visual data, which are trained to match the distribution of the training dataset. In addition, we also want to control generation to fulfill desired properties such as alignment to a text description, which can be specified with a black-box reward function. Prior works fine-tune pretrained diffusion models to achieve this goal through reinforcement learning-based algorithms. Nonetheless, they suffer from issues including slow credit assignment as well as low quality in their generated samples. In this work, we explore techniques that do not directly maximize the reward but rather generate high-reward images with relatively high probability -- a natural scenario for the framework of generative flow networks (GFlowNets). To this end, we propose the Diffusion Alignment with GFlowNet (DAG) algorithm to post-train diffusion models with black-box property functions. Extensive experiments on Stable Diffusion and various reward specifications corroborate that our method could effectively align large-scale text-to-image diffusion models with given reward information.
We consider dimension reduction of multiview data, which are emerging in scientific studies. Formulating multiview data as multi-variate data with block structures corresponding to the different views, or views of data, we estimate top eigenvectors from multiview data that have two-fold sparsity, elementwise sparsity and blockwise sparsity. We propose a Fantope-based optimization criterion with multiple penalties to enforce the desired sparsity patterns and a denoising step is employed to handle potential presence of heteroskedastic noise across different data views. An alternating direction method of multipliers (ADMM) algorithm is used for optimization. We derive the l2 convergence of the estimated top eigenvectors and establish their sparsity and support recovery properties. Numerical studies are used to illustrate the proposed method.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.