In digital circuit design, testbenches constitute the cornerstone of simulation-based hardware verification. Traditional methodologies for testbench generation during simulation-based hardware verification still remain partially manual, resulting in inefficiencies in testing various scenarios and requiring expensive time from designers. Large Language Models (LLMs) have demonstrated their potential in automating the circuit design flow. However, directly applying LLMs to generate testbenches suffers from a low pass rate. To address this challenge, we introduce AutoBench, the first LLM-based testbench generator for digital circuit design, which requires only the description of the design under test (DUT) to automatically generate comprehensive testbenches. In AutoBench, a hybrid testbench structure and a self-checking system are realized using LLMs. To validate the generated testbenches, we also introduce an automated testbench evaluation framework to evaluate the quality of generated testbenches from multiple perspectives. Experimental results demonstrate that AutoBench achieves a 57% improvement in the testbench pass@1 ratio compared with the baseline that directly generates testbenches using LLMs. For 75 sequential circuits, AutoBench successfully has a 3.36 times testbench pass@1 ratio compared with the baseline. The source codes and experimental results are open-sourced at this link: //github.com/AutoBench/AutoBench
Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at //github.com/chincharles/u-emo.
This work introduces Text2FX, a method that leverages CLAP embeddings and differentiable digital signal processing to control audio effects, such as equalization and reverberation, using open-vocabulary natural language prompts (e.g., "make this sound in-your-face and bold"). Text2FX operates without retraining any models, relying instead on single-instance optimization within the existing embedding space. We show that CLAP encodes valuable information for controlling audio effects and propose two optimization approaches using CLAP to map text to audio effect parameters. While we demonstrate with CLAP, this approach is applicable to any shared text-audio embedding space. Similarly, while we demonstrate with equalization and reverberation, any differentiable audio effect may be controlled. We conduct a listener study with diverse text prompts and source audio to evaluate the quality and alignment of these methods with human perception.
While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six state-of-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization. The datasets are available at //huggingface.co/datasets/furonghuang-lab/Easy2Hard-Bench.
We present a novel autonomous driving framework, DualAD, designed to imitate human reasoning during driving. DualAD comprises two layers: a rule-based motion planner at the bottom layer that handles routine driving tasks requiring minimal reasoning, and an upper layer featuring a rule-based text encoder that converts driving scenarios from absolute states into text description. This text is then processed by a large language model (LLM) to make driving decisions. The upper layer intervenes in the bottom layer's decisions when potential danger is detected, mimicking human reasoning in critical situations. Closed-loop experiments demonstrate that DualAD, using a zero-shot pre-trained model, significantly outperforms rule-based motion planners that lack reasoning abilities. Our experiments also highlight the effectiveness of the text encoder, which considerably enhances the model's scenario understanding. Additionally, the integrated DualAD model improves with stronger LLMs, indicating the framework's potential for further enhancement. We make code and benchmarks publicly available.
We introduce LingoQA, a novel dataset and benchmark for visual question answering in autonomous driving. The dataset contains 28K unique short video scenarios, and 419K annotations. Evaluating state-of-the-art vision-language models on our benchmark shows that their performance is below human capabilities, with GPT-4V responding truthfully to 59.6% of the questions compared to 96.6% for humans. For evaluation, we propose a truthfulness classifier, called Lingo-Judge, that achieves a 0.95 Spearman correlation coefficient to human evaluations, surpassing existing techniques like METEOR, BLEU, CIDEr, and GPT-4. We establish a baseline vision-language model and run extensive ablation studies to understand its performance. We release our dataset and benchmark as an evaluation platform for vision-language models in autonomous driving.
The advent of edge computing has made real-time intelligent video analytics feasible. Previous works, based on traditional model architecture (e.g., CNN, RNN, etc.), employ various strategies to filter out non-region-of-interest content to minimize bandwidth and computation consumption but show inferior performance in adverse environments. Recently, visual foundation models based on transformers have shown great performance in adverse environments due to their amazing generalization capability. However, they require a large amount of computation power, which limits their applications in real-time intelligent video analytics. In this paper, we find visual foundation models like Vision Transformer (ViT) also have a dedicated acceleration mechanism for video analytics. To this end, we introduce Arena, an end-to-end edge-assisted video inference acceleration system based on ViT. We leverage the capability of ViT that can be accelerated through token pruning by only offloading and feeding Patches-of-Interest to the downstream models. Additionally, we design an adaptive keyframe inference switching algorithm tailored to different videos, capable of adapting to the current video content to jointly optimize accuracy and bandwidth. Through extensive experiments, our findings reveal that Arena can boost inference speeds by up to 1.58\(\times\) and 1.82\(\times\) on average while consuming only 47\% and 31\% of the bandwidth, respectively, all with high inference accuracy.
Deep learning models are often deployed in downstream tasks that the training procedure may not be aware of. For example, models solely trained to achieve accurate predictions may struggle to perform well on downstream tasks because seemingly small prediction errors may incur drastic task errors. The standard end-to-end learning approach is to make the task loss differentiable or to introduce a differentiable surrogate that the model can be trained on. In these settings, the task loss needs to be carefully balanced with the prediction loss because they may have conflicting objectives. We propose take the task loss signal one level deeper than the parameters of the model and use it to learn the parameters of the loss function the model is trained on, which can be done by learning a metric in the prediction space. This approach does not alter the optimal prediction model itself, but rather changes the model learning to emphasize the information important for the downstream task. This enables us to achieve the best of both worlds: a prediction model trained in the original prediction space while also being valuable for the desired downstream task. We validate our approach through experiments conducted in two main settings: 1) decision-focused model learning scenarios involving portfolio optimization and budget allocation, and 2) reinforcement learning in noisy environments with distracting states. The source code to reproduce our experiments is available at //github.com/facebookresearch/taskmet
We introduce LingoQA, a novel dataset and benchmark for visual question answering in autonomous driving. The dataset contains 28K unique short video scenarios, and 419K annotations. Evaluating state-of-the-art vision-language models on our benchmark shows that their performance is below human capabilities, with GPT-4V responding truthfully to 59.6% of the questions compared to 96.6% for humans. For evaluation, we propose a truthfulness classifier, called Lingo-Judge, that achieves a 0.95 Spearman correlation coefficient to human evaluations, surpassing existing techniques like METEOR, BLEU, CIDEr, and GPT-4. We establish a baseline vision-language model and run extensive ablation studies to understand its performance. We release our dataset and benchmark //github.com/wayveai/LingoQA as an evaluation platform for vision-language models in autonomous driving.
With the advances in deep learning, the performance of end-to-end (E2E) single-task models for speech and audio processing has been constantly improving. However, it is still challenging to build a general-purpose model with high performance on multiple tasks, since different speech and audio processing tasks usually require different training data, input features, or model architectures to achieve optimal performance. In this work, MT2KD, a novel two-stage multi-task learning framework is proposed to build a general-purpose speech and audio encoder that jointly performs three fundamental tasks: automatic speech recognition (ASR), audio tagging (AT) and speaker verification (SV). In the first stage, multi-teacher knowledge distillation (KD) is applied to align the feature spaces of three single-task high-performance teacher encoders into a single student encoder using the same unlabelled data. In the second stage, multi-task supervised fine-tuning is carried out by initialising the model from the first stage and training on the separate labelled data of each single task. Experiments demonstrate that the proposed multi-task training pipeline significantly outperforms a baseline model trained with multi-task learning from scratch. The final system achieves good performance on ASR, AT and SV: with less than 4% relative word-error-rate increase on ASR, only 1.9 lower mean averaged precision on AT and 0.23% absolute higher equal error rate on SV compared to the best-performing single-task encoders, using only a 66M total model parameters.
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.