Inexpensive numerical methods are key to enable simulations of systems of a large number of particles of different shapes in Stokes flow. Several approximate methods have been introduced for this purpose. We study the accuracy of the multiblob method for solving the Stokes mobility problem in free space, where the 3D geometry of a particle surface is discretised with spherical blobs and the pair-wise interaction between blobs is described by the RPY-tensor. The paper aims to investigate and improve on the magnitude of the error in the solution velocities of the Stokes mobility problem using a combination of two different techniques: an optimally chosen grid of blobs and a pair-correction inspired by Stokesian dynamics. Optimisation strategies to determine a grid with a certain number of blobs are presented with the aim of matching the hydrodynamic response of a single accurately described ideal particle, alone in the fluid. Small errors in this self-interaction are essential as they determine the basic error level in a system of well-separated particles. With a good match, reasonable accuracy can be obtained even with coarse blob-resolutions of the particle surfaces. The error in the self-interaction is however sensitive to the exact choice of grid parameters and simply hand-picking a suitable blob geometry can lead to errors several orders of magnitude larger in size. The pair-correction is local and cheap to apply, and reduces on the error for more closely interacting particles. Two different types of geometries are considered: spheres and axisymmetric rods with smooth caps. The error in solutions to mobility problems is quantified for particles of varying inter-particle distances for systems containing a few particles, comparing to an accurate solution based on a second kind BIE-formulation where the quadrature error is controlled by employing quadrature by expansion (QBX).
The computational prediction of wave propagation in dam-break floods is a long-standing problem in hydrodynamics and hydrology. Until now, conventional numerical models based on Saint-Venant equations are the dominant approaches. Here we show that a machine learning model that is well-trained on a minimal amount of data, can help predict the long-term dynamic behavior of a one-dimensional dam-break flood with satisfactory accuracy. For this purpose, we solve the Saint-Venant equations for a one-dimensional dam-break flood scenario using the Lax-Wendroff numerical scheme and train the reservoir computing echo state network (RC-ESN) with the dataset by the simulation results consisting of time-sequence flow depths. We demonstrate a good prediction ability of the RC-ESN model, which ahead predicts wave propagation behavior 286 time-steps in the dam-break flood with a root mean square error (RMSE) smaller than 0.01, outperforming the conventional long short-term memory (LSTM) model which reaches a comparable RMSE of only 81 time-steps ahead. To show the performance of the RC-ESN model, we also provide a sensitivity analysis of the prediction accuracy concerning the key parameters including training set size, reservoir size, and spectral radius. Results indicate that the RC-ESN are less dependent on the training set size, a medium reservoir size K=1200~2600 is sufficient. We confirm that the spectral radius \r{ho} shows a complex influence on the prediction accuracy and suggest a smaller spectral radius \r{ho} currently. By changing the initial flow depth of the dam break, we also obtained the conclusion that the prediction horizon of RC-ESN is larger than that of LSTM.
Population protocols are a relatively novel computational model in which very resource-limited anonymous agents interact in pairs with the goal of computing predicates. We consider the probabilistic version of this model, which naturally allows to consider the setup in which a small probability of an incorrect output is tolerated. The main focus of this thesis is the question of confident leader election, which is an extension of the regular leader election problem with an extra requirement for the eventual leader to detect its uniqueness. Having a confident leader allows the population protocols to determine the convergence of its computations. This behaviour of the model is highly beneficial and was shown to be feasible when the original model is extended in various ways. We show that it takes a linear in terms of the population size number of interactions for a probabilistic population protocol to have a non-zero fraction of agents in all reachable states, starting from a configuration with all agents in the same state. This leads us to a conclusion that confident leader election is out of reach even with the probabilistic version of the model.
In this paper, we develop an asymptotic-preserving and energy-conserving (APEC) Particle-In-Cell (PIC) algorithm for the Vlasov-Maxwell system. This algorithm not only guarantees that the asymptotic limiting of the discrete scheme is a consistent and stable discretization of the quasi-neutral limit of the continuous model, but also preserves Gauss's law and energy conservation at the same time, thus it is promising to provide stable simulations of complex plasma systems even in the quasi-neutral regime. The key ingredients for achieving these properties include the generalized Ohm's law for electric field such that the asymptotic-preserving discretization can be achieved, and a proper decomposition of the effects of the electromagnetic fields such that a Lagrange multiplier method can be appropriately employed for correcting the kinetic energy. We investigate the performance of the APEC method with three benchmark tests in one dimension, including the linear Landau damping, the bump-on-tail problem and the two-stream instability. Detailed comparisons are conducted by including the results from the classical explicit leapfrog and the previously developed asymptotic-preserving PIC schemes. Our numerical experiments show that the proposed APEC scheme can give accurate and stable simulations both kinetic and quasi-neutral regimes, demonstrating the attractive properties of the method crossing scales.
Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.
We propose to combine the Carleman estimate and the Newton method to solve an inverse source problem for nonlinear parabolic equations from lateral boundary data. The stability of this inverse source problem is conditionally logarithmic. Hence, numerical results due to the conventional least squares optimization might not be reliable. In order to enhance the stability, we approximate this problem by truncating the high frequency terms of the Fourier series that represents the solution to the governing equation. By this, we derive a system of nonlinear elliptic PDEs whose solution consists of Fourier coefficients of the solution to the parabolic governing equation. We solve this system by the Carleman-Newton method. The Carleman-Newton method is a newly developed algorithm to solve nonlinear PDEs. The strength of the Carleman-Newton method includes (1) no good initial guess is required and (2) the computational cost is not expensive. These features are rigorously proved. Having the solutions to this system in hand, we can directly compute the solution to the proposed inverse problem. Some numerical examples are displayed.
For the first time, a nonlinear interface problem on an unbounded domain with nonmonotone set-valued transmission conditions is analyzed. The investigated problem involves a nonlinear monotone partial differential equation in the interior domain and the Laplacian in the exterior domain. Such a scalar interface problem models nonmonotone frictional contact of elastic infinite media. The variational formulation of the interface problem leads to a hemivariational inequality, which lives on the unbounded domain, and so cannot be treated numerically in a direct way. By boundary integral methods the problem is transformed and a novel hemivariational inequality (HVI) is obtained that lives on the interior domain and on the coupling boundary, only. Thus for discretization the coupling of finite elements and boundary elements is the method of choice. In addition smoothing techniques of nondifferentiable optimization are adapted and the nonsmooth part in the HVI is regularized. Thus we reduce the original variational problem to a finite dimensional problem that can be solved by standard optimization tools. We establish not only convergence results for the total approximation procedure, but also an asymptotic error estimate for the regularized HVI.
The calculation of a three-dimensional underwater acoustic field has always been a key problem in computational ocean acoustics. Traditionally, this solution is usually obtained by directly solving the acoustic Helmholtz equation using a finite difference or finite element algorithm. Solving the three-dimensional Helmholtz equation directly is computationally expensive. For quasi-three-dimensional problems, the Helmholtz equation can be processed by the integral transformation approach, which can greatly reduce the computational cost. In this paper, a numerical algorithm for a quasi-three-dimensional sound field that combines an integral transformation technique, stepwise coupled modes and a spectral method is designed. The quasi-three-dimensional problem is transformed into a two-dimensional problem using an integral transformation strategy. A stepwise approximation is then used to discretize the range dependence of the two-dimensional problem; this approximation is essentially a physical discretization that further reduces the range-dependent two-dimensional problem to a one-dimensional problem. Finally, the Chebyshev--Tau spectral method is employed to accurately solve the one-dimensional problem. We provide the corresponding numerical program SPEC3D for the proposed algorithm and describe some representative numerical examples. In the numerical experiments, the consistency between SPEC3D and the analytical solution/high-precision finite difference program COACH verifies the reliability and capability of the proposed algorithm. A comparison of running times illustrates that the algorithm proposed in this paper is significantly faster than the full three-dimensional algorithm in terms of computational speed.
We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the time step can be subject to stability constraints related to the smallness of Larmor radius. To avoid this limitation, our approach is based on higher-order semi-implicit numerical schemes already validated on dissipative systems [3] and for magnetic fields pointing in a fixed direction [9, 10, 12]. It hinges on asymptotic insights gained in [11] at the continuous level. Thus, when the magnitude of the external magnetic field is large, this scheme provides a consistent approximation of the guiding-center system taking into account curvature and variation of the magnetic field. Finally, we carry out a theoretical proof of consistency and perform several numerical experiments that establish a solid validation of the method and its underlying concepts.
We investigate $L_2$ boosting in the context of kernel regression. Kernel smoothers, in general, lack appealing traits like symmetry and positive definiteness, which are critical not only for understanding theoretical aspects but also for achieving good practical performance. We consider a projection-based smoother (Huang and Chen, 2008) that is symmetric, positive definite, and shrinking. Theoretical results based on the orthonormal decomposition of the smoother reveal additional insights into the boosting algorithm. In our asymptotic framework, we may replace the full-rank smoother with a low-rank approximation. We demonstrate that the smoother's low-rank ($d(n)$) is bounded above by $O(h^{-1})$, where $h$ is the bandwidth. Our numerical findings show that, in terms of prediction accuracy, low-rank smoothers may outperform full-rank smoothers. Furthermore, we show that the boosting estimator with low-rank smoother achieves the optimal convergence rate. Finally, to improve the performance of the boosting algorithm in the presence of outliers, we propose a novel robustified boosting algorithm which can be used with any smoother discussed in the study. We investigate the numerical performance of the proposed approaches using simulations and a real-world case.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.