Although physics-informed neural networks (PINNs) have shown great potential in dealing with nonlinear partial differential equations (PDEs), it is common that PINNs will suffer from the problem of insufficient precision or obtaining incorrect outcomes. Unlike most of the existing solutions trying to enhance the ability of PINN by optimizing the training process, this paper improved the neural network architecture to improve the performance of PINN. We propose a densely multiply PINN (DM-PINN) architecture, which multiplies the output of a hidden layer with the outputs of all the behind hidden layers. Without introducing more trainable parameters, this effective mechanism can significantly improve the accuracy of PINNs. The proposed architecture is evaluated on four benchmark examples (Allan-Cahn equation, Helmholtz equation, Burgers equation and 1D convection equation). Comparisons between the proposed architecture and different PINN structures demonstrate the superior performance of the DM-PINN in both accuracy and efficiency.
Partial differential equations have a wide range of applications in modeling multiple physical, biological, or social phenomena. Therefore, we need to approximate the solutions of these equations in computationally feasible terms. Nowadays, among the most popular numerical methods for solving partial differential equations in engineering, we encounter the finite difference and finite element methods. An alternative numerical method that has recently gained popularity for numerically solving partial differential equations is the use of artificial neural networks. Artificial neural networks, or neural networks for short, are mathematical structures with universal approximation properties. In addition, thanks to the extraordinary computational development of the last decade, neural networks have become accessible and powerful numerical methods for engineers and researchers. For example, imaging and language processing are applications of neural networks today that show sublime performance inconceivable years ago. This dissertation contributes to the numerical solution of partial differential equations using neural networks with the following two-fold objective: investigate the behavior of neural networks as approximators of solutions of partial differential equations and propose neural-network-based methods for frameworks that are hardly addressable via traditional numerical methods. As novel neural-network-based proposals, we first present a method inspired by the finite element method when applying mesh refinements to solve parametric problems. Secondly, we propose a general residual minimization scheme based on a generalized version of the Ritz method. Finally, we develop a memory-based strategy to overcome a usual numerical integration limitation when using neural networks to solve partial differential equations.
We examine the uniqueness of the posterior distribution within an Empirical Bayes framework using a discretized prior. To achieve this, we impose Rational Expectations conditions on the prior, focusing on coherence and stability properties. We derive the conditions necessary for posterior uniqueness when observations are drawn from either discrete or continuous distributions. Additionally, we discuss the properties of our discretized prior as an approximation of the true underlying prior.
We present a new angle on the expressive power of graph neural networks (GNNs) by studying how the predictions of real-valued GNN classifiers, such as those classifying graphs probabilistically, evolve as we apply them on larger graphs drawn from some random graph model. We show that the output converges to a constant function, which upper-bounds what these classifiers can uniformly express. This strong convergence phenomenon applies to a very wide class of GNNs, including state of the art models, with aggregates including mean and the attention-based mechanism of graph transformers. Our results apply to a broad class of random graph models, including sparse and dense variants of the Erd\H{o}s-R\'enyi model, the stochastic block model, and the Barab\'asi-Albert model. We empirically validate these findings, observing that the convergence phenomenon appears not only on random graphs but also on some real-world graphs.
Graph learning architectures based on the k-dimensional Weisfeiler-Leman (k-WL) hierarchy offer a theoretically well-understood expressive power. However, such architectures often fail to deliver solid predictive performance on real-world tasks, limiting their practical impact. In contrast, global attention-based models such as graph transformers demonstrate strong performance in practice, but comparing their expressive power with the k-WL hierarchy remains challenging, particularly since these architectures rely on positional or structural encodings for their expressivity and predictive performance. To address this, we show that the recently proposed Edge Transformer, a global attention model operating on node pairs instead of nodes, has at least 3-WL expressive power. Empirically, we demonstrate that the Edge Transformer surpasses other theoretically aligned architectures regarding predictive performance while not relying on positional or structural encodings. Our code is available at //github.com/luis-mueller/towards-principled-gts
Accurate approximation of a real-valued function depends on two aspects of the available data: the density of inputs within the domain of interest and the variation of the outputs over that domain. There are few methods for assessing whether the density of inputs is \textit{sufficient} to identify the relevant variations in outputs -- i.e., the ``geometric scale'' of the function -- despite the fact that sampling density is closely tied to the success or failure of an approximation method. In this paper, we introduce a general purpose, computational approach to detecting the geometric scale of real-valued functions over a fixed domain using a deterministic interpolation technique from computational geometry. The algorithm is intended to work on scalar data in moderate dimensions (2-10). Our algorithm is based on the observation that a sequence of piecewise linear interpolants will converge to a continuous function at a quadratic rate (in $L^2$ norm) if and only if the data are sampled densely enough to distinguish the feature from noise (assuming sufficiently regular sampling). We present numerical experiments demonstrating how our method can identify feature scale, estimate uncertainty in feature scale, and assess the sampling density for fixed (i.e., static) datasets of input-output pairs. We include analytical results in support of our numerical findings and have released lightweight code that can be adapted for use in a variety of data science settings.
In recent years, Solving partial differential equations has shifted the focus of traditional neural network studies from finite-dimensional Euclidean spaces to generalized functional spaces in research. A novel methodology is to learn an operator as a means of approximating the mapping between outputs. Currently, researchers have proposed a variety of operator architectures. Nevertheless, the majority of these architectures adopt an iterative update architecture, whereby a single operator is learned from the same function space. In practical physical science problems, the numerical solutions of partial differential equations are complex, and a serial single operator is unable to accurately approximate the intricate mapping between input and output. So, We propose a deep parallel operator model (DPNO) for efficiently and accurately solving partial differential equations. DPNO employs convolutional neural networks to extract local features and map data into distinct latent spaces. Designing a parallel block of double Fourier neural operators to solve the iterative error problem. DPNO approximates complex mappings between inputs and outputs by learning multiple operators in different potential spaces in parallel blocks. DPNO achieved the best performance on five of them, with an average improvement of 10.5\%, and ranked second on one dataset.
Analyzing data in non-Euclidean spaces, such as bioinformatics, biology, and geology, where variables represent directions or angles, poses unique challenges. This type of data is known as circular data in univariate cases and can be termed spherical or toroidal in multivariate contexts. In this paper, we introduce a novel extension of Probabilistic Principal Component Analysis (PPCA) designed for toroidal (or torus) data, termed Torus Probabilistic PCA (TPPCA). We provide detailed algorithms for implementing TPPCA and demonstrate its applicability to torus data. To assess the efficacy of TPPCA, we perform comparative analyses using a simulation study and three real datasets. Our findings highlight the advantages and limitations of TPPCA in handling torus data. Furthermore, we propose statistical tests based on likelihood ratio statistics to determine the optimal number of components, enhancing the practical utility of TPPCA for real-world applications.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.