Knapsack is one of the most fundamental problems in theoretical computer science. In the $(1 - \epsilon)$-approximation setting, although there is a fine-grained lower bound of $(n + 1 / \epsilon) ^ {2 - o(1)}$ based on the $(\min, +)$-convolution hypothesis ([K{\"u}nnemann, Paturi and Stefan Schneider, ICALP 2017] and [Cygan, Mucha, Wegrzycki and Wlodarczyk, 2017]), the best algorithm is randomized and runs in $\tilde O\left(n + (\frac{1}{\epsilon})^{11/5}/2^{\Omega(\sqrt{\log(1/\epsilon)})}\right)$ time [Deng, Jin and Mao, SODA 2023], and it remains an important open problem whether an algorithm with a running time that matches the lower bound (up to a sub-polynomial factor) exists. We answer the question positively by showing a deterministic $(1 - \epsilon)$-approximation scheme for knapsack that runs in $\tilde O(n + (1 / \epsilon) ^ {2})$ time. We first extend a known lemma in a recursive way to reduce the problem to $n \epsilon$-additive approximation for $n$ items with profits in $[1, 2)$. Then we give a simple efficient geometry-based algorithm for the reduced problem.
Coresets are arguably the most popular compression paradigm for center-based clustering objectives such as $k$-means. Given a point set $P$, a coreset $\Omega$ is a small, weighted summary that preserves the cost of all candidate solutions $S$ up to a $(1\pm \varepsilon)$ factor. For $k$-means in $d$-dimensional Euclidean space the cost for solution $S$ is $\sum_{p\in P}\min_{s\in S}\|p-s\|^2$. A very popular method for coreset construction, both in theory and practice, is Sensitivity Sampling, where points are sampled in proportion to their importance. We show that Sensitivity Sampling yields optimal coresets of size $\tilde{O}(k/\varepsilon^2\min(\sqrt{k},\varepsilon^{-2}))$ for worst-case instances. Uniquely among all known coreset algorithms, for well-clusterable data sets with $\Omega(1)$ cost stability, Sensitivity Sampling gives coresets of size $\tilde{O}(k/\varepsilon^2)$, improving over the worst-case lower bound. Notably, Sensitivity Sampling does not have to know the cost stability in order to exploit it: It is appropriately sensitive to the clusterability of the data set while being oblivious to it. We also show that any coreset for stable instances consisting of only input points must have size $\Omega(k/\varepsilon^2)$. Our results for Sensitivity Sampling also extend to the $k$-median problem, and more general metric spaces.
For $\tilde{f}(t) = \exp(\frac{\alpha-1}{\alpha}t)$, this paper proposes a $\tilde{f}$-mean information gain measure. R\'{e}nyi divergence is shown to be the maximum $\tilde{f}$-mean information gain incurred at each elementary event $y$ of channel output $Y$ and Sibson mutual information is the $\tilde{f}$-mean of this $Y$-elementary information gain. Both are proposed as $\alpha$-leakage measures, indicating the most information an adversary can obtain on sensitive data. It is shown that the existing $\alpha$-leakage by Arimoto mutual information can be expressed as $\tilde{f}$-mean measures by a scaled probability. Further, Sibson mutual information is interpreted as the maximum $\tilde{f}$-mean information gain over all estimation decisions applied to channel output. This reveals that the exiting generalized Blahut-Arimoto method for computing R\'{e}nyi capacity (or Gallager's error exponent) in fact maximizes a $\tilde{f}$-mean information gain iteratively over estimation decision and channel input. This paper also derives a decomposition of $\tilde{f}$-mean information gain, analogous to the Sibson identity for R\'{e}nyi divergence.
In this paper, for any fixed positive integers $t$ and $q>2$, we construct $q$-ary codes correcting a burst of at most $t$ deletions with redundancy $\log n+8\log\log n+o(\log\log n)+\gamma_{q,t}$ bits and near-linear encoding/decoding complexity, where $n$ is the message length and $\gamma_{q,t}$ is a constant that only depends on $q$ and $t$. In previous works there are constructions of such codes with redundancy $\log n+O(\log q\log\log n)$ bits or $\log n+O(t^2\log\log n)+O(t\log q)$. The redundancy of our new construction is independent of $q$ and $t$ in the second term.
In this short note, we give a novel algorithm for $O(1)$ round triangle counting in bounded arboricity graphs. Counting triangles in $O(1)$ rounds (exactly) is listed as one of the interesting remaining open problems in the recent survey of Im et al. [IKLMV23]. The previous paper of Biswas et al. [BELMR20], which achieved the best bounds under this setting, used $O(\log \log n)$ rounds in sublinear space per machine and $O(m\alpha)$ total space where $\alpha$ is the arboricity of the graph and $n$ and $m$ are the number of vertices and edges in the graph, respectively. Our new algorithm is very simple, achieves the optimal $O(1)$ rounds without increasing the space per machine and the total space, and has the potential of being easily implementable in practice.
For nearly three decades, language models derived from the $n$-gram assumption held the state of the art on the task. The key to their success lay in the application of various smoothing techniques that served to combat overfitting. However, when neural language models toppled $n$-gram models as the best performers, $n$-gram smoothing techniques became less relevant. Indeed, it would hardly be an understatement to suggest that the line of inquiry into $n$-gram smoothing techniques became dormant. This paper re-opens the role classical $n$-gram smoothing techniques may play in the age of neural language models. First, we draw a formal equivalence between label smoothing, a popular regularization technique for neural language models, and add-$\lambda$ smoothing. Second, we derive a generalized framework for converting any $n$-gram smoothing technique into a regularizer compatible with neural language models. Our empirical results find that our novel regularizers are comparable to and, indeed, sometimes outperform label smoothing on language modeling and machine translation.
We suggest new closely related methods for numerical inversion of $Z$-transform and Wiener-Hopf factorization of functions on the unit circle, based on sinh-deformations of the contours of integration, corresponding changes of variables and the simplified trapezoid rule. As applications, we consider evaluation of high moments of probability distributions and construction of causal filters. Programs in Matlab running on a Mac with moderate characteristics achieves the precision E-14 in several dozen of microseconds and E-11 in several milliseconds, respectively.
$\ell_1$ regularization is used to preserve edges or enforce sparsity in a solution to an inverse problem. We investigate the Split Bregman and the Majorization-Minimization iterative methods that turn this non-smooth minimization problem into a sequence of steps that include solving an $\ell_2$-regularized minimization problem. We consider selecting the regularization parameter in the inner generalized Tikhonov regularization problems that occur at each iteration in these $\ell_1$ iterative methods. The generalized cross validation and $\chi^2$ degrees of freedom methods are extended to these inner problems. In particular, for the $\chi^2$ method this includes extending the $\chi^2$ result for problems in which the regularization operator has more rows than columns, and showing how to use the $A-$weighted generalized inverse to estimate prior information at each inner iteration. Numerical experiments for image deblurring problems demonstrate that it is more effective to select the regularization parameter automatically within the iterative schemes than to keep it fixed for all iterations. Moreover, an appropriate regularization parameter can be estimated in the early iterations and used fixed to convergence.
We present PSiLON Net, an MLP architecture that uses $L_1$ weight normalization for each weight vector and shares the length parameter across the layer. The 1-path-norm provides a bound for the Lipschitz constant of a neural network and reflects on its generalizability, and we show how PSiLON Net's design drastically simplifies the 1-path-norm, while providing an inductive bias towards efficient learning and near-sparse parameters. We propose a pruning method to achieve exact sparsity in the final stages of training, if desired. To exploit the inductive bias of residual networks, we present a simplified residual block, leveraging concatenated ReLU activations. For networks constructed with such blocks, we prove that considering only a subset of possible paths in the 1-path-norm is sufficient to bound the Lipschitz constant. Using the 1-path-norm and this improved bound as regularizers, we conduct experiments in the small data regime using overparameterized PSiLON Nets and PSiLON ResNets, demonstrating reliable optimization and strong performance.
Most differentially private (DP) algorithms assume a central model in which a reliable third party inserts noise to queries made on datasets, or a local model where the users locally perturb their data. However, the central model is vulnerable via a single point of failure, and in the local model, the utility of the data deteriorates significantly. The recently proposed shuffle model is an intermediate framework between the central and the local paradigms where the users send their locally privatized data to a server where messages are shuffled, effacing the link between a privatized message and the corresponding user, giving a better trade-off between privacy and utility than the local model, as its privacy gets amplified without adding more noise. In this paper, we theoretically derive the strictest known bound for DP guarantee for the shuffle models with $k$-Randomized Response local randomizers. There on, we focus on the utility of the shuffle model for histogram queries. Leveraging on the matrix inversion method, which is used to approximate the original distribution from the empirical one produced by the $k$-RR mechanism, we de-noise the histogram produced by the shuffle model to evaluate the total variation distance of the resulting histogram from the true one, which we regard as the measure of utility of the privacy mechanism. We perform experiments on both synthetic and real data to compare the privacy-utility trade-off of the shuffle model with that of the central one privatized by adding the state-of-the-art Gaussian noise to each bin. Although the experimental results stay consistent with the literature that favour the central model, we see that, the difference in statistical utilities between the central and the shuffle models is very small, showing that they are almost comparable under the same level of DP.
We study the communication complexity of $(\Delta + 1)$ vertex coloring, where the edges of an $n$-vertex graph of maximum degree $\Delta$ are partitioned between two players. We provide a randomized protocol which uses $O(n)$ bits of communication and ends with both players knowing the coloring. Combining this with a folklore $\Omega(n)$ lower bound, this settles the randomized communication complexity of $(\Delta + 1)$-coloring up to constant factors.