亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a general definition of hybrid transforms for constructible functions. These are integral transforms combining Lebesgue integration and Euler calculus. Lebesgue integration gives access to well-studied kernels and to regularity results, while Euler calculus conveys topological information and allows for compatibility with operations on constructible functions. We conduct a systematic study of such transforms and introduce two new ones: the Euler-Fourier and Euler-Laplace transforms. We show that the first has a left inverse and that the second provides a satisfactory generalization of Govc and Hepworth's persistent magnitude to constructible sheaves, in particular to multi-parameter persistent modules. Finally, we prove index-theoretic formulae expressing a wide class of hybrid transforms as generalized Euler integral transforms. This yields expectation formulae for transforms of constructible functions associated to (sub)level-sets persistence of random Gaussian filtrations.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成(cheng),VLSI雜志(zhi)。 Publisher:Elsevier。 SIT:

Observability is a fundamental structural property of any dynamic system and describes the possibility of reconstructing the state that characterizes the system from observing its inputs and outputs. Despite the huge effort made to study this property and to introduce analytical criteria able to check whether a dynamic system satisfies this property or not, there is no general analytical criterion to automatically check the state observability when the dynamics are also driven by unknown inputs. Here, we introduce the general analytical solution of this fundamental problem, often called the unknown input observability problem. This paper provides the general analytical solution of this problem, namely, it provides the systematic procedure, based on automatic computation (differentiation and matrix rank determination), that allows us to automatically check the state observability even in the presence of unknown inputs. A first solution of this problem was presented in the second part of the book: "Observability: A New Theory Based on the Group of Invariance" [45]. The solution presented by this paper completes the previous solution in [45]. In particular, the new solution exhaustively accounts for the systems that do not belong to the category of the systems that are canonic with respect to their unknown inputs. The new solution is also provided in the form of a new algorithm. A further novelty with respect to the algorithm provided in [45] consists of a new convergence criterion that holds in all the cases (the convergence criterion of the algorithm provided in [45] can fail in some cases). Finally, we also provide the answer to the problem of unknown input reconstruction which is intimately related to the problem of state observability. We illustrate the implementation of the new algorithm by studying a nonlinear system in the framework of visual-inertial sensor fusion.

This paper considers the strong error analysis of the Euler and fast Euler methods for nonlinear overdamped generalized Langevin equations driven by the fractional noise. The main difficulty lies in handling the interaction between the fractional Brownian motion and the singular kernel, which is overcome by means of the Malliavin calculus and fine estimates of several multiple singular integrals. Consequently, these two methods are proved to be strongly convergent with order nearly $\min\{2(H+\alpha-1), \alpha\}$, where $H \in (1/2,1)$ and $\alpha\in(1-H,1)$ respectively characterize the singularity levels of fractional noises and singular kernels in the underlying equation. This result improves the existing convergence order $H+\alpha-1$ of Euler methods for the nonlinear case, and gives a positive answer to the open problem raised in [4]. As an application of the theoretical findings, we further investigate the complexity of the multilevel Monte Carlo simulation based on the fast Euler method, which turns out to behave better performance than the standard Monte Carlo simulation when computing the expectation of functionals of the considered equation.

Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the state-of-the-art for light spanners by constructing a $(2k-1)(1+\epsilon)$-spanner with $O(n^{1+1/k})$ edges and $O_\epsilon(n^{1/k})$ lightness. Soon after, Filtser and Solomon [FS19] showed that the classic greedy spanner construction achieves the same bounds The major drawback of the greedy spanner is its running time of $O(mn^{1+1/k})$ (which is faster than [CW16]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness $\Omega_\epsilon(kn^{1/k})$, even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an $O_\epsilon(n^{2+1/k+\epsilon'})$ time spanner construction which achieves the state-of-the-art bounds. Our second result is an $O_\epsilon(m + n\log n)$ time construction of a spanner with $(2k-1)(1+\epsilon)$ stretch, $O(\log k\cdot n^{1+1/k})$ edges and $O_\epsilon(\log k\cdot n^{1/k})$ lightness. This is an exponential improvement in the dependence on $k$ compared to the previous result with such running time. Finally, for the important special case where $k=\log n$, for every constant $\epsilon>0$, we provide an $O(m+n^{1+\epsilon})$ time construction that produces an $O(\log n)$-spanner with $O(n)$ edges and $O(1)$ lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any $k = \omega(1)$. To achieve our constructions, we show a novel deterministic incremental approximate distance oracle, which may be of independent interest.

We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.

In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.

After substantial progress over the last 15 years, the "algebraic CSP-dichotomy conjecture" reduces to the following: every local constraint satisfaction problem (CSP) associated with a finite idempotent algebra is tractable if and only if the algebra has a Taylor term operation. Despite the tremendous achievements in this area (including recently announce proofs of the general conjecture), there remain examples of small algebras with just a single binary operation whose CSP resists direct classification as either tractable or NP-complete using known methods. In this paper we present some new methods for approaching such problems, with particular focus on those techniques that help us attack the class of finite algebras known as "commutative idempotent binars" (CIBs). We demonstrate the utility of these methods by using them to prove that every CIB of cardinality at most 4 yields a tractable CSP.

In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) and provide excess population risks for some special classes of functions that are faster than the previous results of general convex and strongly convex functions. In the first part of the paper, we study the case where the population risk function satisfies the Tysbakov Noise Condition (TNC) with some parameter $\theta>1$. Specifically, we first show that under some mild assumptions on the loss functions, there is an algorithm whose output could achieve an upper bound of $\tilde{O}((\frac{1}{\sqrt{n}}+\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $(\epsilon, \delta)$-DP when $\theta\geq 2$, here $n$ is the sample size and $d$ is the dimension of the space. Then we address the inefficiency issue, improve the upper bounds by $\text{Poly}(\log n)$ factors and extend to the case where $\theta\geq \bar{\theta}>1$ for some known $\bar{\theta}$. Next we show that the excess population risk of population functions satisfying TNC with parameter $\theta\geq 2$ is always lower bounded by $\Omega((\frac{d}{n\epsilon})^\frac{\theta}{\theta-1}) $ and $\Omega((\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $\epsilon$-DP and $(\epsilon, \delta)$-DP, respectively. In the second part, we focus on a special case where the population risk function is strongly convex. Unlike the previous studies, here we assume the loss function is {\em non-negative} and {\em the optimal value of population risk is sufficiently small}. With these additional assumptions, we propose a new method whose output could achieve an upper bound of $O(\frac{d\log\frac{1}{\delta}}{n^2\epsilon^2}+\frac{1}{n^{\tau}})$ for any $\tau\geq 1$ in $(\epsilon,\delta)$-DP model if the sample size $n$ is sufficiently large.

In this paper we consider a linearized variable-time-step two-step backward differentiation formula (BDF2) scheme for solving nonlinear parabolic equations. The scheme is constructed by using the variable time-step BDF2 for the linear term and a Newton linearized method for the nonlinear term in time combining with a Galerkin finite element method (FEM) in space. We prove the unconditionally optimal error estimate of the proposed scheme under mild restrictions on the ratio of adjacent time-steps, i.e. $0<r_k < r_{\max} \approx 4.8645$ and on the maximum time step. The proof involves the discrete orthogonal convolution (DOC) and discrete complementary convolution (DCC) kernels, and the error splitting approach. In addition, our analysis also shows that the first level solution $u^1$ obtained by BDF1 (i.e. backward Euler scheme) does not cause the loss of global accuracy of second order. Numerical examples are provided to demonstrate our theoretical results.

The commonly quoted error rates for QMC integration with an infinite low discrepancy sequence is $O(n^{-1}\log(n)^r)$ with $r=d$ for extensible sequences and $r=d-1$ otherwise. Such rates hold uniformly over all $d$ dimensional integrands of Hardy-Krause variation one when using $n$ evaluation points. Implicit in those bounds is that for any sequence of QMC points, the integrand can be chosen to depend on $n$. In this paper we show that rates with any $r<(d-1)/2$ can hold when $f$ is held fixed as $n\to\infty$. This is accomplished following a suggestion of Erich Novak to use some unpublished results of Trojan from the 1980s as given in the information based complexity monograph of Traub, Wasilkowski and Wo\'zniakowski. The proof is made by applying a technique of Roth with the theorem of Trojan. The proof is non constructive and we do not know of any integrand of bounded variation in the sense of Hardy and Krause for which the QMC error exceeds $(\log n)^{1+\epsilon}/n$ for infinitely many $n$ when using a digital sequence such as one of Sobol's. An empirical search when $d=2$ for integrands designed to exploit known weaknesses in certain point sets showed no evidence that $r>1$ is needed. An example with $d=3$ and $n$ up to $2^{100}$ might possibly require $r>1$.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司