亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose two communication efficient decentralized optimization algorithms over a general directed multi-agent network. The first algorithm, termed Compressed Push-Pull (CPP), combines the gradient tracking Push-Pull method with communication compression. We show that CPP is applicable to a general class of unbiased compression operators and achieves linear convergence rate for strongly convex and smooth objective functions. The second algorithm is a broadcast-like version of CPP (B-CPP), and it also achieves linear convergence rate under the same conditions on the objective functions. B-CPP can be applied in an asynchronous broadcast setting and further reduce communication costs compared to CPP. Numerical experiments complement the theoretical analysis and confirm the effectiveness of the proposed methods.

相關內容

Cognitive systems generally require a human to translate a problem definition into some specification that the cognitive system can use to attempt to solve the problem or perform the task. In this paper, we illustrate that large language models (LLMs) can be utilized to map a problem class, defined in natural language, into a semi-formal specification that can then be utilized by an existing reasoning and learning system to solve instances from the problem class. We present the design of LLM-enabled cognitive task analyst agent(s). Implemented with LLM agents, this system produces a definition of problem spaces for tasks specified in natural language. LLM prompts are derived from the definition of problem spaces in the AI literature and general problem-solving strategies (Polya's How to Solve It). A cognitive system can then use the problem-space specification, applying domain-general problem solving strategies ("weak methods" such as search), to solve multiple instances of problems from the problem class. This result, while preliminary, suggests the potential for speeding cognitive systems research via disintermediation of problem formulation while also retaining core capabilities of cognitive systems, such as robust inference and online learning.

When optimizing machine learning models, there are various scenarios where gradient computations are challenging or even infeasible. Furthermore, in reinforcement learning (RL), preference-based RL that only compares between options has wide applications, including reinforcement learning with human feedback in large language models. In this paper, we systematically study optimization of a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$ only assuming an oracle that compares function values at two points and tells which is larger. When $f$ is convex, we give two algorithms using $\tilde{O}(n/\epsilon)$ and $\tilde{O}(n^{2})$ comparison queries to find an $\epsilon$-optimal solution, respectively. When $f$ is nonconvex, our algorithm uses $\tilde{O}(n/\epsilon^2)$ comparison queries to find an $\epsilon$-approximate stationary point. All these results match the best-known zeroth-order algorithms with function evaluation queries in $n$ dependence, thus suggest that \emph{comparisons are all you need for optimizing smooth functions using derivative-free methods}. In addition, we also give an algorithm for escaping saddle points and reaching an $\epsilon$-second order stationary point of a nonconvex $f$, using $\tilde{O}(n^{1.5}/\epsilon^{2.5})$ comparison queries.

Unconstrained optimization problems are typically solved using iterative methods, which often depend on line search techniques to determine optimal step lengths in each iteration. This paper introduces a novel line search approach. Traditional line search methods, aimed at determining optimal step lengths, often discard valuable data from the search process and focus on refining step length intervals. This paper proposes a more efficient method using Bayesian optimization, which utilizes all available data points, i.e., function values and gradients, to guide the search towards a potential global minimum. This new approach more effectively explores the search space, leading to better solution quality. It is also easy to implement and integrate into existing frameworks. Tested on the challenging CUTEst test set, it demonstrates superior performance compared to existing state-of-the-art methods, solving more problems to optimality with equivalent resource usage.

In this paper, we investigate the contextual multinomial logit (MNL) bandit problem in which a learning agent sequentially selects an assortment based on contextual information, and user feedback follows an MNL choice model. There has been a significant discrepancy between lower and upper regret bounds, particularly regarding the feature dimension $d$ and the maximum assortment size $K$. Additionally, the variation in reward structures between these bounds complicates the quest for optimality. Under uniform rewards, where all items have the same expected reward, we establish a regret lower bound of $\Omega(d\sqrt{\smash[b]{T/K}})$ and propose a constant-time algorithm, OFU-MNL+, that achieves a matching upper bound of $\tilde{\mathcal{O}}(d\sqrt{\smash[b]{T/K}})$. Under non-uniform rewards, we prove a lower bound of $\Omega(d\sqrt{T})$ and an upper bound of $\tilde{\mathcal{O}}(d\sqrt{T})$, also achievable by OFU-MNL+. Our empirical studies support these theoretical findings. To the best of our knowledge, this is the first work in the MNL contextual bandit literature to prove minimax optimality -- for either uniform or non-uniform reward setting -- and to propose a computationally efficient algorithm that achieves this optimality up to logarithmic factors.

In this paper, we introduce a primal-dual algorithmic framework for solving Symmetric Cone Programs (SCPs), a versatile optimization model that unifies and extends Linear, Second-Order Cone (SOCP), and Semidefinite Programming (SDP). Our work generalizes the primal-dual framework for SDPs introduced by Arora and Kale, leveraging a recent extension of the Multiplicative Weights Update method (MWU) to symmetric cones. Going beyond existing works, our framework can handle SOCPs and mixed SCPs, exhibits nearly linear time complexity, and can be effectively parallelized. To illustrate the efficacy of our framework, we employ it to develop approximation algorithms for two geometric optimization problems: the Smallest Enclosing Sphere problem and the Support Vector Machine problem. Our theoretical analyses demonstrate that the two algorithms compute approximate solutions in nearly linear running time and with parallel depth scaling polylogarithmically with the input size. We compare our algorithms against CGAL as well as interior point solvers applied to these problems. Experiments show that our algorithms are highly efficient when implemented on a CPU and achieve substantial speedups when parallelized on a GPU, allowing us to solve large-scale instances of these problems.

Anomaly detection and localization without any manual annotations and prior knowledge is a challenging task under the setting of unsupervised learning. The existing works achieve excellent performance in the anomaly detection, but with complex networks or cumbersome pipelines. To address this issue, this paper explores a simple but effective architecture in the anomaly detection. It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder. In particular, it does not require any data augmentations and anomalous images for training. The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization. The difference comparison between those features of encoder and decode lead to more accurate and robust localization results than the comparison in single feature or pixel-by-pixel comparison in the conventional works. Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets on both anomaly detection and localization.

In a Stackelberg congestion game (SCG), a leader aims to maximize their own gain by anticipating and manipulating the equilibrium state at which the followers settle by playing a congestion game. Often formulated as bilevel programs, large-scale SCGs are well known for their intractability and complexity. Here, we attempt to tackle this computational challenge by marrying traditional methodologies with the latest differentiable programming techniques in machine learning. The core idea centers on replacing the lower-level equilibrium problem with a smooth evolution trajectory defined by the imitative logit dynamic (ILD), which we prove converges to the equilibrium of the congestion game under mild conditions. Building upon this theoretical foundation, we propose two new local search algorithms for SCGs. The first is a gradient descent algorithm that obtains the derivatives by unrolling ILD via differentiable programming. Thanks to the smoothness of ILD, the algorithm promises both efficiency and scalability. The second algorithm adds a heuristic twist by cutting short the followers' evolution trajectory. Behaviorally, this means that, instead of anticipating the followers' best response at equilibrium, the leader seeks to approximate that response by only looking ahead a limited number of steps. Our numerical experiments are carried out over various instances of classic SCG applications, ranging from toy benchmarks to large-scale real-world examples. The results show the proposed algorithms are reliable and scalable local solvers that deliver high-quality solutions with greater regularity and significantly less computational effort compared to the many incumbents included in our study.

Adaptive experiments use preliminary analyses of the data to inform further course of action and are commonly used in many disciplines including medical and social sciences. Because the null hypothesis and experimental design are not pre-specified, it has long been recognized that statistical inference for adaptive experiments is not straightforward. Most existing methods only apply to specific adaptive designs and rely on strong assumptions. In this work, we propose selective randomization inference as a general framework for analyzing adaptive experiments. In a nutshell, our approach applies conditional post-selection inference to randomization tests. By using directed acyclic graphs to describe the data generating process, we derive a selective randomization p-value that controls the selective type-I error without requiring independent and identically distributed data or any other modelling assumptions. We show how rejection sampling and Markov Chain Monte Carlo can be used to compute the selective randomization p-values and construct confidence intervals for a homogeneous treatment effect. To mitigate the risk of disconnected confidence intervals, we propose the use of hold-out units. Lastly, we demonstrate our method and compare it with other randomization tests using synthetic and real-world data.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司