Dexterous manipulation of arbitrary objects, a fundamental daily task for humans, has been a grand challenge for autonomous robotic systems. Although data-driven approaches using reinforcement learning can develop specialist policies that discover behaviors to control a single object, they often exhibit poor generalization to unseen ones. In this work, we show that policies learned by existing reinforcement learning algorithms can in fact be generalist when combined with multi-task learning and a well-chosen object representation. We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects. Video results at //huangwl18.github.io/geometry-dex
Zero-Shot Learning (ZSL) aims to transfer classification capability from seen to unseen classes. Recent methods have proved that generalization and specialization are two essential abilities to achieve good performance in ZSL. However, they all focus on only one of the abilities, resulting in models that are either too general with the degraded classifying ability or too specialized to generalize to unseen classes. In this paper, we propose an end-to-end network with balanced generalization and specialization abilities, termed as BGSNet, to take advantage of both abilities, and balance them at instance- and dataset-level. Specifically, BGSNet consists of two branches: the Generalization Network (GNet), which applies episodic meta-learning to learn generalized knowledge, and the Balanced Specialization Network (BSNet), which adopts multiple attentive extractors to extract discriminative features and fulfill the instance-level balance. A novel self-adjusting diversity loss is designed to optimize BSNet with less redundancy and more diversity. We further propose a differentiable dataset-level balance and update the weights in a linear annealing schedule to simulate network pruning and thus obtain the optimal structure for BSNet at a low cost with dataset-level balance achieved. Experiments on four benchmark datasets demonstrate our model's effectiveness. Sufficient component ablations prove the necessity of integrating generalization and specialization abilities.
We apply deep metric learning for the first time to the prob-lem of classifying planktic foraminifer shells on microscopic images. This species recognition task is an important information source and scientific pillar for reconstructing past climates. All foraminifer CNN recognition pipelines in the literature produce black-box classifiers that lack visualisation options for human experts and cannot be applied to open set problems. Here, we benchmark metric learning against these pipelines, produce the first scientific visualisation of the phenotypic planktic foraminifer morphology space, and demonstrate that metric learning can be used to cluster species unseen during training. We show that metric learning out-performs all published CNN-based state-of-the-art benchmarks in this domain. We evaluate our approach on the 34,640 expert-annotated images of the Endless Forams public library of 35 modern planktic foraminifera species. Our results on this data show leading 92% accuracy (at 0.84 F1-score) in reproducing expert labels on withheld test data, and 66.5% accuracy (at 0.70 F1-score) when clustering species never encountered in training. We conclude that metric learning is highly effective for this domain and serves as an important tool towards expert-in-the-loop automation of microfossil identification. Key code, network weights, and data splits are published with this paper for full reproducibility.
Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks without any interactions with the environments, making RL truly practical in many real-world applications. This problem is still not fully understood, for which two major challenges need to be addressed. First, offline RL usually suffers from bootstrapping errors of out-of-distribution state-actions which leads to divergence of value functions. Second, meta-RL requires efficient and robust task inference learned jointly with control policy. In this work, we enforce behavior regularization on learned policy as a general approach to offline RL, combined with a deterministic context encoder for efficient task inference. We propose a novel negative-power distance metric on bounded context embedding space, whose gradients propagation is detached from the Bellman backup. We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches involving meta-RL and distance metric learning. To the best of our knowledge, our method is the first model-free and end-to-end OMRL algorithm, which is computationally efficient and demonstrated to outperform prior algorithms on several meta-RL benchmarks.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Autonomous urban driving navigation with complex multi-agent dynamics is under-explored due to the difficulty of learning an optimal driving policy. The traditional modular pipeline heavily relies on hand-designed rules and the pre-processing perception system while the supervised learning-based models are limited by the accessibility of extensive human experience. We present a general and principled Controllable Imitative Reinforcement Learning (CIRL) approach which successfully makes the driving agent achieve higher success rates based on only vision inputs in a high-fidelity car simulator. To alleviate the low exploration efficiency for large continuous action space that often prohibits the use of classical RL on challenging real tasks, our CIRL explores over a reasonably constrained action space guided by encoded experiences that imitate human demonstrations, building upon Deep Deterministic Policy Gradient (DDPG). Moreover, we propose to specialize adaptive policies and steering-angle reward designs for different control signals (i.e. follow, straight, turn right, turn left) based on the shared representations to improve the model capability in tackling with diverse cases. Extensive experiments on CARLA driving benchmark demonstrate that CIRL substantially outperforms all previous methods in terms of the percentage of successfully completed episodes on a variety of goal-directed driving tasks. We also show its superior generalization capability in unseen environments. To our knowledge, this is the first successful case of the learned driving policy through reinforcement learning in the high-fidelity simulator, which performs better-than supervised imitation learning.
Deep embedding learning becomes more attractive for discriminative feature learning, but many methods still require hard-class mining, which is computationally complex and performance-sensitive. To this end, we propose Adaptive Large Margin N-Pair loss (ALMN) to address the aforementioned issues. Instead of exploring hard example-mining strategy, we introduce the concept of large margin constraint. This constraint aims at encouraging local-adaptive large angular decision margin among dissimilar samples in multimodal feature space so as to significantly encourage intraclass compactness and interclass separability. And it is mainly achieved by a simple yet novel geometrical Virtual Point Generating (VPG) method, which converts artificially setting a fixed margin into automatically generating a boundary training sample in feature space and is an open question. We demonstrate the effectiveness of our method on several popular datasets for image retrieval and clustering tasks.