亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consensus algorithms play a critical role in blockchains and directly impact their performance. During consensus processing, nodes need to validate and order the pending transactions into a new block, which requires verifying the application-specific data encapsulated within a transaction. This exposes the underlying data to the consensus nodes, presenting privacy concerns. Existing consensus algorithms focus on realizing application security and performance goals, but lack privacy-by-design properties or are resource-heavy and intended for securing permissionless blockchain networks. In this paper, we propose P-CFT, a zero-knowledge and crash fault tolerant consensus algorithm for permissioned blockchains. The proposed consensus algorithm provides inherent data privacy directly to the consensus layer, while still providing guarantees of crash fault tolerance. We conduct experiments using the Hyperledger Ursa cryptographic library, and the results show promise for integrating P-CFT into existing permissioned blockchain systems requiring privacy-preserving and crash fault tolerant features.

相關內容

Federated learning (FL) as distributed machine learning has gained popularity as privacy-aware Machine Learning (ML) systems have emerged as a technique that prevents privacy leakage by building a global model and by conducting individualized training of decentralized edge clients on their own private data. The existing works, however, employ privacy mechanisms such as Secure Multiparty Computing (SMC), Differential Privacy (DP), etc. Which are immensely susceptible to interference, massive computational overhead, low accuracy, etc. With the increasingly broad deployment of FL systems, it is challenging to ensure fairness and maintain active client participation in FL systems. Very few works ensure reasonably satisfactory performances for the numerous diverse clients and fail to prevent potential bias against particular demographics in FL systems. The current efforts fail to strike a compromise between privacy, fairness, and model performance in FL systems and are vulnerable to a number of additional problems. In this paper, we provide a comprehensive survey stating the basic concepts of FL, the existing privacy challenges, techniques, and relevant works concerning privacy in FL. We also provide an extensive overview of the increasing fairness challenges, existing fairness notions, and the limited works that attempt both privacy and fairness in FL. By comprehensively describing the existing FL systems, we present the potential future directions pertaining to the challenges of privacy-preserving and fairness-aware FL systems.

Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection. This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy. In this paper, we focus on the privacy and utility (measured by excess risk bounds) performances of differentially private stochastic gradient descent (SGD) algorithms in the setting of stochastic convex optimization. Specifically, we examine the pointwise problem in the low-noise setting for which we derive sharper excess risk bounds for the differentially private SGD algorithm. In the pairwise learning setting, we propose a simple differentially private SGD algorithm based on gradient perturbation. Furthermore, we develop novel utility bounds for the proposed algorithm, proving that it achieves optimal excess risk rates even for non-smooth losses. Notably, we establish fast learning rates for privacy-preserving pairwise learning under the low-noise condition, which is the first of its kind.

This paper proposes a hybrid genetic algorithm for solving the Multiple Traveling Salesman Problem (mTSP) to minimize the length of the longest tour. The genetic algorithm utilizes a TSP sequence as the representation of each individual, and a dynamic programming algorithm is employed to evaluate the individual and find the optimal mTSP solution for the given sequence of cities. A novel crossover operator is designed to combine similar tours from two parents and offers great diversity for the population. For some of the generated offspring, we detect and remove intersections between tours to obtain a solution with no intersections. This is particularly useful for the min-max mTSP. The generated offspring are also improved by a self-adaptive random local search and a thorough neighborhood search. Our algorithm outperforms all existing algorithms on average, with similar cutoff time thresholds, when tested against multiple benchmark sets found in the literature. Additionally, we improve the best-known solutions for 21 out of 89 instances on four benchmark sets.

We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.

Digitized histopathology glass slides, known as Whole Slide Images (WSIs), are often several gigapixels large and contain sensitive metadata information, which makes distributed processing unfeasible. Moreover, artifacts in WSIs may result in unreliable predictions when directly applied by Deep Learning (DL) algorithms. Therefore, preprocessing WSIs is beneficial, e.g., eliminating privacy-sensitive information, splitting a gigapixel medical image into tiles, and removing the diagnostically irrelevant areas. This work proposes a cloud service to parallelize the preprocessing pipeline for large medical images. The data and model parallelization will not only boost the end-to-end processing efficiency for histological tasks but also secure the reconstruction of WSI by randomly distributing tiles across processing nodes. Furthermore, the initial steps of the pipeline will be integrated into the Jupyter-based Virtual Research Environment (VRE) to enable image owners to configure and automate the execution process based on resource allocation.

Terabytes of data are collected by wind turbine manufacturers from their fleets every day. And yet, a lack of data access and sharing impedes exploiting the full potential of the data. We present a distributed machine learning approach that preserves the data privacy by leaving the data on the wind turbines while still enabling fleet-wide learning on those local data. We show that through federated fleet-wide learning, turbines with little or no representative training data can benefit from more accurate normal behavior models. Customizing the global federated model to individual turbines yields the highest fault detection accuracy in cases where the monitored target variable is distributed heterogeneously across the fleet. We demonstrate this for bearing temperatures, a target variable whose normal behavior can vary widely depending on the turbine. We show that no turbine experiences a loss in model performance from participating in the federated learning process, resulting in superior performance of the federated learning strategy in our case studies. The distributed learning increases the normal behavior model training times by about a factor of ten due to increased communication overhead and slower model convergence.

Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

北京阿比特科技有限公司