亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A residual-type a posteriori error estimation is developed for an interior penalty virtual element method (IPVEM) to solve a Kirchhoff plate bending problem. The computable error estimator is incorporated. We derive the reliability and efficiency of the a posteriori error bound by constructing an enriching operator and establishing some related error estimates. As an outcome of the error estimator, an adaptive VEM is introduced by means of the mesh refinement strategy with the one-hanging-node rule. Numerical results on various benchmark tests confirm the robustness of the proposed error estimator and show the efficiency of the resulting adaptive VEM. (This is the initial version; additional content will be included in the final version.)

相關內容

We analyze and validate the virtual element method combined with a boundary correction similar to the one in [1,2], to solve problems on two dimensional domains with curved boundaries approximated by polygonal domains. We focus on the case of approximating domains obtained as the union of squared elements out of a uniform structured mesh, such as the one that naturally arises when the domain is issued from an image. We show, both theoretically and numerically, that resorting to polygonal elements allows the assumptions required for stability to be satisfied for any polynomial order. This allows us to fully exploit the potential of higher order methods. Efficiency is ensured by a novel static condensation strategy acting on the edges of the decomposition.

Among randomized numerical linear algebra strategies, so-called sketching procedures are emerging as effective reduction means to accelerate the computation of Krylov subspace methods for, e.g., the solution of linear systems, eigenvalue computations, and the approximation of matrix functions. While there is plenty of experimental evidence showing that sketched Krylov solvers may dramatically improve performance over standard Krylov methods, many features of these schemes are still unexplored. We derive a new sketched Arnoldi-type relation that allows us to obtain several different new theoretical results. These lead to an improvement of our understanding of sketched Krylov methods, in particular by explaining why the frequently occurring sketched Ritz values far outside the spectral region of A do not negatively influence the convergence of sketched Krylov methods for f (A)b. Our findings also help to identify, among several possible equivalent formulations, the most suitable sketched approximations according to their numerical stability properties. These results are also employed to analyze the error of sketched Krylov methods in the approximation of the action of matrix functions, significantly contributing to the theory available in the current literature.

We characterize the convergence properties of traditional best-response (BR) algorithms in computing solutions to mixed-integer Nash equilibrium problems (MI-NEPs) that turn into a class of monotone Nash equilibrium problems (NEPs) once relaxed the integer restrictions. We show that the sequence produced by a Jacobi/Gauss-Seidel BR method always approaches a bounded region containing the entire solution set of the MI-NEP, whose tightness depends on the problem data, and it is related to the degree of strong monotonicity of the relaxed NEP. When the underlying algorithm is applied to the relaxed NEP, we establish data-dependent complexity results characterizing its convergence to the unique solution of the NEP. In addition, we derive one of the very few sufficient conditions for the existence of solutions to MI-NEPs. The theoretical results developed bring important practical benefits, illustrated on a numerical instance of a smart building control application.

When objects are packed in a cluster, physical interactions are unavoidable. Such interactions emerge because of the objects geometric features; some of these features promote entanglement, while others create repulsion. When entanglement occurs, the cluster exhibits a global, complex behaviour, which arises from the stochastic interactions between objects. We hereby refer to such a cluster as an entangled granular metamaterial. We investigate the geometrical features of the objects which make up the cluster, henceforth referred to as grains, that maximise entanglement. We hypothesise that a cluster composed from grains with high propensity to tangle, will also show propensity to interact with a second cluster of tangled objects. To demonstrate this, we use the entangled granular metamaterials to perform complex robotic picking tasks, where conventional grippers struggle. We employ an electromagnet to attract the metamaterial (ferromagnetic) and drop it onto a second cluster of objects (targets, non-ferromagnetic). When the electromagnet is re-activated, the entanglement ensures that both the metamaterial and the targets are picked, with varying degrees of physical engagement that strongly depend on geometric features. Interestingly, although the metamaterials structural arrangement is random, it creates repeatable and consistent interactions with a second tangled media, enabling robust picking of the latter.

A high-order numerical method is developed for solving the Cahn-Hilliard-Navier-Stokes equations with the Flory-Huggins potential. The scheme is based on the $Q_k$ finite element with mass lumping on rectangular grids, the second-order convex splitting method, and the pressure correction method. The unique solvability, unconditional stability, and bound-preserving properties are rigorously established. The key to bound-preservation is the discrete $L^1$ estimate of the singular potential. Ample numerical experiments are performed to validate the desired properties of the proposed numerical scheme.

We propose and study a one-dimensional model which consists of two cross-diffusion systems coupled via a moving interface. The motivation stems from the modelling of complex diffusion processes in the context of the vapor deposition of thin films. In our model, cross-diffusion of the various chemical species can be respectively modelled by a size-exclusion system for the solid phase and the Stefan-Maxwell system for the gaseous phase. The coupling between the two phases is modelled by linear phase transition laws of Butler-Volmer type, resulting in an interface evolution. The continuous properties of the model are investigated, in particular its entropy variational structure and stationary states. We introduce a two-point flux approximation finite volume scheme. The moving interface is addressed with a moving-mesh approach, where the mesh is locally deformed around the interface. The resulting discrete nonlinear system is shown to admit a solution that preserves the main properties of the continuous system, namely: mass conservation, nonnegativity, volume-filling constraints, decay of the free energy and asymptotics. In particular, the moving-mesh approach is compatible with the entropy structure of the continuous model. Numerical results illustrate these properties and the dynamics of the model.

We establish that the bisimulation invariant fragment of MSO over finite transition systems is expressively equivalent over finite transition systems to modal mu-calculus, a question that had remained open for several decades. The proof goes by translating the question to an algebraic framework, and showing that the languages of regular trees that are recognized by finitary tree algebras whose sorts zero and one are finite are the regular ones, ie. the ones expressible in mu-calculus. This corresponds for trees to a weak form of the key translation of Wilke algebras to omega-semigroup over infinite words, and was also a missing piece in the algebraic theory of regular languages of infinite trees since twenty years.

In this paper, a two-dimensional Dirichlet-to-Neumann (DtN) finite element method (FEM) is developed to analyze the scattering of SH guided waves due to an interface delamination in a bi-material plate. During the finite element analysis, it is necessary to determine the far-field DtN conditions at virtual boundaries where both displacements and tractions are unknown. In this study, firstly, the scattered waves at the virtual boundaries are represented by a superposition of guided waves with unknown scattered coefficients. Secondly, utilizing the mode orthogonality, the unknown tractions at virtual boundaries are expressed in terms of the unknown scattered displacements at virtual boundaries via scattered coefficients. Thirdly, this relationship at virtual boundaries can be finally assembled into the global DtN-FEM matrix to solve the problem. This method is simple and elegant, which has advantages on dimension reduction and needs no absorption medium or perfectly matched layer to suppress the reflected waves compared to traditional FEM. Furthermore, the reflection and transmission coefficients of each guided mode can be directly obtained without post-processing. This proposed DtN-FEM will be compared with boundary element method (BEM), and finally validated for several benchmark problems.

The use of variable grid BDF methods for parabolic equations leads to structures that are called variable (coefficient) Toeplitz. Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.

This paper develops a novel Bayesian approach for nonlinear regression with symmetric matrix predictors, often used to encode connectivity of different nodes. Unlike methods that vectorize matrices as predictors that result in a large number of model parameters and unstable estimation, we propose a Bayesian multi-index regression method, resulting in a projection-pursuit-type estimator that leverages the structure of matrix-valued predictors. We establish the model identifiability conditions and impose a sparsity-inducing prior on the projection directions for sparse sampling to prevent overfitting and enhance interpretability of the parameter estimates. Posterior inference is conducted through Bayesian backfitting. The performance of the proposed method is evaluated through simulation studies and a case study investigating the relationship between brain connectivity features and cognitive scores.

北京阿比特科技有限公司