Incomplete or missing data in three-dimensional (3D) models can lead to erroneous or flawed renderings, limiting their usefulness in applications such as visualization, geometric computation, and 3D printing. Conventional surface-repair techniques often fail to infer complex geometric details in missing areas. Neural networks successfully address hole-filling tasks in 2D images using inpainting techniques. The combination of surface reconstruction algorithms, guided by the model's curvature properties and the creativity of neural networks in the inpainting processes should provide realistic results in the hole completion task. In this paper, we propose a novel method entitled SR-CurvANN (Surface Reconstruction Based on Curvature-Aware Neural Networks) that incorporates neural network-based 2D inpainting to effectively reconstruct 3D surfaces. We train the neural networks with images that represent planar representations of the curvature at vertices of hundreds of 3D models. Once the missing areas have been inferred, a coarse-to-fine surface deformation process ensures that the surface fits the reconstructed curvature image. Our proposal makes it possible to learn and generalize patterns from a wide variety of training 3D models, generating comprehensive inpainted curvature images and surfaces. Experiments conducted on 959 models with several holes have demonstrated that SR-CurvANN excels in the shape completion process, filling holes with a remarkable level of realism and precision.
The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic datasets that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense. Our code is available at //github.com/AngusDujw/Diversity-Driven-Synthesis.//github.com/AngusDujw/Diversity-Driven-Synthesis.
Powerful large language models have facilitated the development of writing assistants that promise to significantly improve the quality and efficiency of composition and communication. However, a barrier to effective assistance is the lack of personalization in LLM outputs to the author's communication style, specialized knowledge, and values. In this paper, we address this challenge by proposing Pearl, a LLM writing assistant personalized with a retriever that is trained to be generation-calibrated for personalization. Generation calibration ensures that our retriever selects historic user authored documents to augment an LLM prompt such that they are likely to help an LLM generation better adhere to a users' preferences. We propose two key novelties for training such a retriever: (1) A training data selection method that identifies user requests likely to benefit from personalization and documents that provide that benefit; and (2) A scale-calibrating KL-divergence objective that ensures that our retriever scores remain proportional to the downstream generation quality from using the document for personalized generation. In a series of holistic evaluations, we demonstrate the effectiveness of Pearl in generating long-form texts on multiple social media datasets. Finally, we demonstrate how a generation-calibrated retriever can double as a performance predictor -- detecting low quality retrieval, and improving potentially under-performing outputs via revision with LLMs.
Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.
Generalist foundation models (GFMs) are renowned for their exceptional capability and flexibility in effectively generalizing across diverse tasks and modalities. In the field of medicine, while GFMs exhibit superior generalizability based on their extensive intrinsic knowledge as well as proficiency in instruction following and in-context learning, specialist models excel in precision due to their domain knowledge. In this work, for the first time, we explore the synergy between the GFM and specialist models, to enable precise medical image analysis on a broader scope. Specifically, we propose a cooperative framework, Generalist-Specialist Collaboration (GSCo), which consists of two stages, namely the construction of GFM and specialists, and collaborative inference on downstream tasks. In the construction stage, we develop MedDr, the largest open-source GFM tailored for medicine, showcasing exceptional instruction-following and in-context learning capabilities. Meanwhile, a series of lightweight specialists are crafted for downstream tasks with low computational cost. In the collaborative inference stage, we introduce two cooperative mechanisms, Mixture-of-Expert Diagnosis and Retrieval-Augmented Diagnosis, to harvest the generalist's in-context learning abilities alongside the specialists' domain expertise. For a comprehensive evaluation, we curate a large-scale benchmark featuring 28 datasets and about 250,000 images. Extensive results demonstrate that MedDr consistently outperforms state-of-the-art GFMs on downstream datasets. Furthermore, GSCo exceeds both GFMs and specialists across all out-of-domain disease diagnosis datasets. These findings indicate a significant paradigm shift in the application of GFMs, transitioning from separate models for specific tasks to a collaborative approach between GFMs and specialists, thereby advancing the frontiers of generalizable AI in medicine.
Synthetic data generation has become an increasingly popular way of training models without the need for large, manually labeled datasets. For tasks like text embedding, synthetic data offers diverse and scalable training examples, significantly reducing the cost of human annotation. However, most current approaches rely heavily on proprietary models like GPT-4, which are expensive and inefficient for generating large-scale embedding data. In this paper, we introduce SPEED, a framework that aligns open-source small models (8B) to efficiently generate large-scale synthetic embedding data. Through supervised fine-tuning, preference optimization, and self-improvement, SPEED enables small open-source models to produce high-quality data. Remarkably, SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data. Using this efficient generator, we conduct a comprehensive study on how various factors within the alignment pipeline impact data quality and reveal the scaling law for synthetic embedding data.
Soft robotic manipulators are generally slow despite their great adaptability, resilience, and compliance. This limitation also extends to current soft robotic micromanipulators. Here, we introduce FilMBot, a 3-DOF film-based, electromagnetically actuated, soft kinematic robotic micromanipulator achieving speeds up to 2117 $\deg$/s and 2456 $\deg$/s in $\alpha$ and $\beta$ angular motions, with corresponding linear velocities of 1.61 m/s and 1.92 m/s using a 4-cm needle end-effector, and 1.57 m/s along the Z axis. The robot can reach ~1.50 m/s in path-following tasks, operates at frequencies up to 30 Hz, and remains functional up to 50 Hz. It demonstrates high precision (~6.3 $\mu$m, or ~0.05% of its workspace) in small path-following tasks. The novel combination of the low-stiffness soft kinematic film structure and strong electromagnetic actuation in FilMBot opens new avenues for soft robotics. Furthermore, its simple construction and inexpensive, readily accessible components could broaden the application of micromanipulators beyond current academic and professional users.
Quantization of large language models (LLMs) faces significant challenges, particularly due to the presence of outlier activations that impede efficient low-bit representation. Traditional approaches predominantly address Normal Outliers, which are activations across all tokens with relatively large magnitudes. However, these methods struggle with smoothing Massive Outliers that display significantly larger values, which leads to significant performance degradation in low-bit quantization. In this paper, we introduce DuQuant, a novel approach that utilizes rotation and permutation transformations to more effectively mitigate both massive and normal outliers. First, DuQuant starts by constructing the rotation matrix, using specific outlier dimensions as prior knowledge, to redistribute outliers to adjacent channels by block-wise rotation. Second, We further employ a zigzag permutation to balance the distribution of outliers across blocks, thereby reducing block-wise variance. A subsequent rotation further smooths the activation landscape, enhancing model performance. DuQuant simplifies the quantization process and excels in managing outliers, outperforming the state-of-the-art baselines across various sizes and types of LLMs on multiple tasks, even with 4-bit weight-activation quantization. Our code is available at //github.com/Hsu1023/DuQuant.
We introduce a fairness-aware dataset for job recommendations in advertising, designed to foster research in algorithmic fairness within real-world scenarios. It was collected and prepared to comply with privacy standards and business confidentiality. An additional challenge is the lack of access to protected user attributes such as gender, for which we propose a solution to obtain a proxy estimate. Despite being anonymized and including a proxy for a sensitive attribute, our dataset preserves predictive power and maintains a realistic and challenging benchmark. This dataset addresses a significant gap in the availability of fairness-focused resources for high-impact domains like advertising -- the actual impact being having access or not to precious employment opportunities, where balancing fairness and utility is a common industrial challenge. We also explore various stages in the advertising process where unfairness can occur and introduce a method to compute a fair utility metric for the job recommendations in online systems case from a biased dataset. Experimental evaluations of bias mitigation techniques on the released dataset demonstrate potential improvements in fairness and the associated trade-offs with utility. The dataset is hosted at //huggingface.co/datasets/criteo/FairJob. Source code for the experiments is hosted at //github.com/criteo-research/FairJob-dataset/.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.