亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we explore the capability of an agent to construct a logical sequence of action steps, thereby assembling a strategic procedural plan. This plan is crucial for navigating from an initial visual observation to a target visual outcome, as depicted in real-life instructional videos. Existing works have attained partial success by extensively leveraging various sources of information available in the datasets, such as heavy intermediate visual observations, procedural names, or natural language step-by-step instructions, for features or supervision signals. However, the task remains formidable due to the implicit causal constraints in the sequencing of steps and the variability inherent in multiple feasible plans. To tackle these intricacies that previous efforts have overlooked, we propose to enhance the capabilities of the agent by infusing it with procedural knowledge. This knowledge, sourced from training procedure plans and structured as a directed weighted graph, equips the agent to better navigate the complexities of step sequencing and its potential variations. We coin our approach KEPP, a novel Knowledge-Enhanced Procedure Planning system, which harnesses a probabilistic procedural knowledge graph extracted from training data, effectively acting as a comprehensive textbook for the training domain. Experimental evaluations across three widely-used datasets under settings of varying complexity reveal that KEPP attains superior, state-of-the-art results while requiring only minimal supervision.

相關內容

In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it can converge to the global minima of deep neural network loss functions provided that the net is of sufficient width. We present empirical evidence that our theoretically founded regularized gradient clipping algorithm is also competitive with the state-of-the-art deep-learning heuristics. Hence the algorithm presented here constitutes a new approach to rigorous deep learning. The modification we do to standard gradient clipping is designed to leverage the PL* condition, a variant of the Polyak-Lojasiewicz inequality which was recently proven to be true for various neural networks for any depth within a neighborhood of the initialisation.

In this paper, we prove measurability of event for which a general continuous-time stochastic process satisfies continuous-time Metric Temporal Logic (MTL) formula. Continuous-time MTL can define temporal constrains for physical system in natural way. Then there are several researches that deal with probability of continuous MTL semantics for stochastic processes. However, proving measurability for such events is by no means an obvious task, even though it is essential. The difficulty comes from the semantics of "until operator", which is defined by logical sum of uncountably many propositions. Given the difficulty involved in proving the measurability of such an event using classical measure-theoretic methods, we employ a theorem from stochastic analysis. This theorem is utilized to prove the measurability of hitting times for stochastic processes, and it stands as a profound result within the theory of capacity. Next, we provide an example that illustrates the failure of probability approximation when discretizing the continuous semantics of MTL formulas with respect to time. Additionally, we prove that the probability of the discretized semantics converges to that of the continuous semantics when we impose restrictions on diamond operators to prevent nesting.

In stochastic contextual bandits, an agent sequentially makes actions from a time-dependent action set based on past experience to minimize the cumulative regret. Like many other machine learning algorithms, the performance of bandits heavily depends on the values of hyperparameters, and theoretically derived parameter values may lead to unsatisfactory results in practice. Moreover, it is infeasible to use offline tuning methods like cross-validation to choose hyperparameters under the bandit environment, as the decisions should be made in real-time. To address this challenge, we propose the first online continuous hyperparameter tuning framework for contextual bandits to learn the optimal parameter configuration in practice within a search space on the fly. Specifically, we use a double-layer bandit framework named CDT (Continuous Dynamic Tuning) and formulate the hyperparameter optimization as a non-stationary continuum-armed bandit, where each arm represents a combination of hyperparameters, and the corresponding reward is the algorithmic result. For the top layer, we propose the Zooming TS algorithm that utilizes Thompson Sampling (TS) for exploration and a restart technique to get around the \textit{switching} environment. The proposed CDT framework can be easily utilized to tune contextual bandit algorithms without any pre-specified candidate set for multiple hyperparameters. We further show that it could achieve a sublinear regret in theory and performs consistently better than all existing methods on both synthetic and real datasets.

Conventional distributed approaches to coverage control may suffer from lack of convergence and poor performance, due to the fact that agents have limited information, especially in non-convex discrete environments. To address this issue, we extend the approach of [Marden 2016] which demonstrates how a limited degree of inter-agent communication can be exploited to overcome such pitfalls in one-dimensional discrete environments. The focus of this paper is on extending such results to general dimensional settings. We show that the extension is convergent and keeps the approximation ratio of 2, meaning that any stable solution is guaranteed to have a performance within 50% of the optimal one. The experimental results exhibit that our algorithm outperforms several state-of-the-art algorithms, and also that the runtime is scalable.

Despite the recent increase in research activity, deep-learning models have not yet been widely accepted in several real-world settings, such as medicine. The shortage of high-quality annotated data often hinders the development of robust and generalizable models, which do not suffer from degraded effectiveness when presented with out-of-distribution (OOD) datasets. Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity, as it takes advantage of unlabeled data to increase model effectiveness and robustness. However, the selection of appropriate transformations during the learning process is not a trivial task and even breaks down the ability of the network to extract meaningful information. In this research, we propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification. We perform an extensive comparative evaluation of a wide range of audio-based augmentations, evaluate models on multiple datasets across downstream tasks, and report on the impact of each augmentation. We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases. We argue and experimentally demonstrate that, contrastive SSL pretraining can assist in providing robust classifiers which can generalize to unseen, OOD data, without relying on time- and labor-intensive annotation processes by medical experts. Furthermore, the proposed evaluation protocol sheds light on the most promising and appropriate augmentations for robust PCG signal processing, by calculating their effect size on model training. Finally, we provide researchers and practitioners with a roadmap towards producing robust models for PCG classification, in addition to an open-source codebase for developing novel approaches.

Mixed membership community detection is a challenging problem. In this paper, to detect mixed memberships, we propose a new method Mixed-SLIM which is a spectral clustering method on the symmetrized Laplacian inverse matrix under the degree-corrected mixed membership model. We provide theoretical bounds for the estimation error on the proposed algorithm and its regularized version under mild conditions. Meanwhile, we provide some extensions of the proposed method to deal with large networks in practice. These Mixed-SLIM methods outperform state-of-art methods in simulations and substantial empirical datasets for both community detection and mixed membership community detection problems.

In this paper, we present two datasets that we make publicly available for research. The data is collected in a testbed comprised of a custom-made Reconfigurable Intelligent Surface (RIS) prototype and two regular OFDM transceivers within an anechoic chamber. First, we discuss the details of the testbed and equipment used, including insights about the design and implementation of our RIS prototype. We further present the methodology we employ to gather measurement samples, which consists of letting the RIS electronically steer the signal reflections from an OFDM transmitter toward a specific location. To this end, we evaluate a suitably designed configuration codebook and collect measurement samples of the received power with an OFDM receiver. Finally, we present the resulting datasets, their format, and examples of exploiting this data for research purposes.

Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data. Recent methods suggest that one approach of data forgetting is by precomputing and storing statistics carrying second-order information to improve computational and memory efficiency. However, they rely on restrictive assumptions and the computation/storage suffer from the curse of model parameter dimensionality, making it challenging to apply to most deep neural networks. In this work, we propose a Hessian-free online unlearning method. We propose to maintain a statistical vector for each data point, computed through affine stochastic recursion approximation of the difference between retrained and learned models. Our proposed algorithm achieves near-instantaneous online unlearning as it only requires a vector addition operation. Based on the strategy that recollecting statistics for forgetting data, the proposed method significantly reduces the unlearning runtime. Experimental studies demonstrate that the proposed scheme surpasses existing results by orders of magnitude in terms of time and memory costs, while also enhancing accuracy.

Data augmentations are known to improve robustness in speech-processing tasks. In this study, we summarize and compare different data augmentation strategies using S3PRL toolkit. We explore how HuBERT and wav2vec perform using different augmentation techniques (SpecAugment, Gaussian Noise, Speed Perturbation) for Phoneme Recognition (PR) and Automatic Speech Recognition (ASR) tasks. We evaluate model performance in terms of phoneme error rate (PER) and word error rate (WER). From the experiments, we observed that SpecAugment slightly improves the performance of HuBERT and wav2vec on the original dataset. Also, we show that models trained using the Gaussian Noise and Speed Perturbation dataset are more robust when tested with augmented test sets.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

北京阿比特科技有限公司