亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cell-free massive multiple-input-multiple-output (CF-mMIMO) is a next-generation wireless access technology that offers superior coverage and spectral efficiency compared to conventional MIMO. With many future applications in unlicensed spectrum bands, networks will likely experience and may even be limited by out-of-system (OoS) interference. The OoS interference differs from the in-system interference from other serving users in that for OoS interference, the associated pilot signals are unknown or non-existent, which makes estimation of the OoS interferer channel difficult. In this paper, we propose a novel sequential algorithm for the suppression of OoS interference for uplink CF-mMIMO with a stripe (daisy-chain) topology. The proposed method has comparable performance to that of a fully centralized interference rejection combining algorithm but has substantially less fronthaul load requirements.

相關內容

Due to the recent wide use of computational resources in cloud computing, new resource provisioning challenges have been emerged. Resource provisioning techniques must keep total costs to a minimum while meeting the requirements of the requests. According to widely usage of cloud services, it seems more challenging to develop effective schemes for provisioning services cost-effectively; we have proposed a novel learning based resource provisioning approach that achieves cost-reduction guarantees of demands. The contributions of our optimized resource provisioning (ORP) approach are as follows. Firstly, it is designed to provide a cost-effective method to efficiently handle the provisioning of requested applications; while most of the existing models allow only workflows in general which cares about the dependencies of the tasks, ORP performs based on services of which applications comprised and cares about their efficient provisioning totally. Secondly, it is a learning automata-based approach which selects the most proper resources for hosting each service of the demanded application; our approach considers both cost and service requirements together for deploying applications. Thirdly, a comprehensive evaluation is performed for three typical workloads: data-intensive, process-intensive and normal applications. The experimental results show that our method adapts most of the requirements efficiently, and furthermore the resulting performance meets our design goals.

Benefiting from tens of GHz of bandwidth, terahertz (THz) communications has become a promising technology for future 6G networks. However, the conventional hybrid beamforming architecture based on frequency-independent phase-shifters is not able to cope with the beam split effect (BSE) in THz massive multiple-input multiple-output (MIMO) systems. Despite some work introducing the frequency-dependent phase shifts via the time delay network to mitigate the beam splitting in THz wideband communications, the corresponding issue in reconfigurable intelligent surface (RIS)-aided communications has not been well investigated. In this paper, the BSE in THz massive MIMO is quantified by analyzing the array gain loss. A new beamforming architecture has been proposed to mitigate this effect under RIS-aided communications scenarios. Simulations are performed to evaluate the effectiveness of the proposed system architecture in combating the array gain loss.

Beam selection for joint transmission in cell-free massive multi-input multi-output systems faces the problem of extremely high training overhead and computational complexity. The traffic-aware quality of service additionally complicates the beam selection problem. To address this issue, we propose a traffic-aware hierarchical beam selection scheme performed in a dual timescale. In the long-timescale, the central processing unit collects wide beam responses from base stations (BSs) to predict the power profile in the narrow beam space with a convolutional neural network, based on which the cascaded multiple-BS beam space is carefully pruned. In the short-timescale, we introduce a centralized reinforcement learning (RL) algorithm to maximize the satisfaction rate of delay w.r.t. beam selection within multiple consecutive time slots. Moreover, we put forward three scalable distributed algorithms including hierarchical distributed Lyapunov optimization, fully distributed RL, and centralized training with decentralized execution of RL to achieve better scalability and better tradeoff between the performance and the execution signal overhead. Numerical results demonstrate that the proposed schemes significantly reduce both model training cost and beam training overhead and are easier to meet the user-specific delay requirement, compared to existing methods.

Scene transfer for vision-based mobile robotics applications is a highly relevant and challenging problem. The utility of a robot greatly depends on its ability to perform a task in the real world, outside of a well-controlled lab environment. Existing scene transfer end-to-end policy learning approaches often suffer from poor sample efficiency or limited generalization capabilities, making them unsuitable for mobile robotics applications. This work proposes an adaptive multi-pair contrastive learning strategy for visual representation learning that enables zero-shot scene transfer and real-world deployment. Control policies relying on the embedding are able to operate in unseen environments without the need for finetuning in the deployment environment. We demonstrate the performance of our approach on the task of agile, vision-based quadrotor flight. Extensive simulation and real-world experiments demonstrate that our approach successfully generalizes beyond the training domain and outperforms all baselines.

Cell-free massive MIMO is emerging as a promising technology for future wireless communication systems, which is expected to offer uniform coverage and high spectral efficiency compared to classical cellular systems. We study in this paper how cell-free massive MIMO can support federated edge learning. Taking advantage of the additive nature of the wireless multiple access channel, over-the-air computation is exploited, where the clients send their local updates simultaneously over the same communication resource. This approach, known as over-the-air federated learning (OTA-FL), is proven to alleviate the communication overhead of federated learning over wireless networks. Considering channel correlation and only imperfect channel state information available at the central server, we propose a practical implementation of OTA-FL over cell-free massive MIMO. The convergence of the proposed implementation is studied analytically and experimentally, confirming the benefits of cell-free massive MIMO for OTA-FL.

Generalized zero-shot skeleton-based action recognition (GZSSAR) is a new challenging problem in computer vision community, which requires models to recognize actions without any training samples. Previous studies only utilize the action labels of verb phrases as the semantic prototypes for learning the mapping from skeleton-based actions to a shared semantic space. However, the limited semantic information of action labels restricts the generalization ability of skeleton features for recognizing unseen actions. In order to solve this dilemma, we propose a multi-semantic fusion (MSF) model for improving the performance of GZSSAR, where two kinds of class-level textual descriptions (i.e., action descriptions and motion descriptions), are collected as auxiliary semantic information to enhance the learning efficacy of generalizable skeleton features. Specially, a pre-trained language encoder takes the action descriptions, motion descriptions and original class labels as inputs to obtain rich semantic features for each action class, while a skeleton encoder is implemented to extract skeleton features. Then, a variational autoencoder (VAE) based generative module is performed to learn a cross-modal alignment between skeleton and semantic features. Finally, a classification module is built to recognize the action categories of input samples, where a seen-unseen classification gate is adopted to predict whether the sample comes from seen action classes or not in GZSSAR. The superior performance in comparisons with previous models validates the effectiveness of the proposed MSF model on GZSSAR.

Ultra-massive multiple-input multiple-output (UM-MIMO) is a cutting-edge technology that promises to revolutionize wireless networks by providing an unprecedentedly high spectral and energy efficiency. The enlarged array aperture of UM-MIMO facilitates the accessibility of the near-field region, thereby offering a novel degree of freedom for communications and sensing. Nevertheless, the transceiver design for such systems is challenging because of the enormous system scale, the complicated channel characteristics, and the uncertainties in propagation environments. Therefore, it is critical to study scalable, low-complexity, and robust algorithms that can efficiently characterize and leverage the properties of the near-field channel. In this article, we will advocate two general frameworks from an artificial intelligence (AI)-native perspective, which are tailored for the algorithmic design of near-field UM-MIMO transceivers. Specifically, the frameworks for both iterative and non-iterative algorithms are discussed. Near-field beam focusing and channel estimation are presented as two tutorial-style examples to demonstrate the significant advantages of the proposed AI-native frameworks in terms of various key performance indicators.

We present a reactive base control method that enables high performance mobile manipulation on-the-move in environments with static and dynamic obstacles. Performing manipulation tasks while the mobile base remains in motion can significantly decrease the time required to perform multi-step tasks, as well as improve the gracefulness of the robot's motion. Existing approaches to manipulation on-the-move either ignore the obstacle avoidance problem or rely on the execution of planned trajectories, which is not suitable in environments with dynamic objects and obstacles. The presented controller addresses both of these deficiencies and demonstrates robust performance of pick-and-place tasks in dynamic environments. The performance is evaluated on several simulated and real-world tasks. On a real-world task with static obstacles, we outperform an existing method by 48\% in terms of total task time. Further, we present real-world examples of our robot performing manipulation tasks on-the-move while avoiding a second autonomous robot in the workspace. See //benburgesslimerick.github.io/MotM-BaseControl for supplementary materials.

Recent advancements in wireless technologies towards the next-generation cellular networks have brought a new era that made it possible to apply cellular technology on traditionally-wired networks with tighter requirements, such as industrial networks. The next-generation cellular technologies (e.g., 5G and Beyond) introduce the concept of ultra-reliable low-latency communications (URLLC). This thesis presents a Software-Defined Networking (SDN) architecture with programmable data planes for the next-generation cellular networks to achieve URLLC. Our design deploys programmable switches between the cellular core and Radio Access Networks (RAN) to monitor and modify data traffic at the line speed. We introduce the concept of \textit{intra-cellular optimization}, a relaxation in cellular networks to allow pre-authorized in-network devices to communicate without being required to signal the core network. We also present a control structure, Unified Control Plane (UCP), containing a novel Ethernet Layer control protocol and an adapted version of link-state routing information distribution among the programmable switches. Our implementation uses P4 with an 5G implementation (Open5Gs) and a UE/RAN simulator. We implement a Python simulator to evaluate the performance of our system on multi-switch topologies by simulating the switch behavior. Our evaluation indicates latency reduction up to 2x with \textit{intra-cellular optimization} compared to the conventional architecture. We show that our design has a ten-millisecond level of control latency, and achieves fine-grained network security and monitoring.

Reconfigurable intelligent surfaces (RIS)-assisted massive multiple-input multiple-output (mMIMO) is a promising technology for applications in next-generation networks. However, reflecting-only RIS provides limited coverage compared to a simultaneously transmitting and reflecting RIS (STAR-RIS). Hence, in this paper, we focus on the downlink achievable rate and its optimization of a STAR-RIS-assisted mMIMO system. Contrary to previous works on STAR-RIS, we consider mMIMO, correlated fading, and multiple user equipments (UEs) at both sides of the RIS. In particular, we introduce an estimation approach of the aggregated channel with the main benefit of reduced overhead links instead of estimating the individual channels. {Next, leveraging channel hardening in mMIMO and the use-and-forget bounding technique, we obtain an achievable rate in closed-form that only depends on statistical channel state information (CSI). To optimize the amplitudes and phase shifts of the STAR-RIS, we employ a projected gradient ascent method (PGAM) that simultaneously adjusts the amplitudes and phase shifts for both energy splitting (ES) and mode switching (MS) STAR-RIS operation protocols.} By considering large-scale fading, the proposed optimization can be performed every several coherence intervals, which can significantly reduce overhead. Considering that STAR-RIS has twice the number of controllable parameters compared to conventional reflecting-only RIS, this accomplishment offers substantial practical benefits. Simulations are carried out to verify the analytical results, reveal the interplay of the achievable rate with fundamental parameters, and show the superiority of STAR-RIS regarding its achievable rate compared to its reflecting-only counterpart.

北京阿比特科技有限公司