亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In general insurance, claims are often lower-truncated and right-censored because insurance contracts may involve deductibles and maximal covers. Most classical statistical models are not (directly) suited to model lower-truncated and right-censored claims. A surprisingly flexible family of distributions that can cope with lower-truncated and right-censored claims is the class of MBBEFD distributions that originally has been introduced by Bernegger (1997) for reinsurance pricing, but which has not gained much attention outside the reinsurance literature. Interestingly, in general insurance, we mainly rely on unimodal skewed densities, whereas the reinsurance literature typically proposes monotonically decreasing densities within the MBBEFD class. We show that this class contains both types of densities, and we extend it to a bigger family of distribution functions suitable for modeling lower-truncated and right-censored claims. In addition, we discuss how changes in the deductible or the maximal cover affect the chosen distributions.

相關內容

We give a simple proof that the first-order theory of well orders is axiomatized by transfinite induction, and that it is decidable.

Hypothesis testing in high dimensional data is a notoriously difficult problem without direct access to competing models' likelihood functions. This paper argues that statistical divergences can be used to quantify the difference between the population distributions of observed data and competing models, justifying their use as the basis of a hypothesis test. We go on to point out how modern techniques for functional optimization let us estimate many divergences, without the need for population likelihood functions, using samples from two distributions alone. We use a physics-based example to show how the proposed two-sample test can be implemented in practice, and discuss the necessary steps required to mature the ideas presented into an experimental framework.

This work investigates the accuracy and numerical stability of CUR decompositions with oversampling. The CUR decomposition approximates a matrix using a subset of columns and rows of the matrix. When the number of columns and the rows are the same, the CUR decomposition can become unstable and less accurate due to the presence of the matrix inverse in the core matrix. Nevertheless, we demonstrate that the CUR decomposition can be implemented in a numerical stable manner and illustrate that oversampling, which increases either the number of columns or rows in the CUR decomposition, can enhance its accuracy and stability. Additionally, this work devises an algorithm for oversampling motivated by the theory of the CUR decomposition and the cosine-sine decomposition, whose competitiveness is illustrated through experiments.

Bell sampling is a simple yet powerful measurement primitive that has recently attracted a lot of attention, and has proven to be a valuable tool in studying stabiliser states. Unfortunately, however, it is known that Bell sampling fails when used on qu\emph{d}its of dimension $d>2$. In this paper, we explore and quantify the limitations of Bell sampling on qudits, and propose new quantum algorithms to circumvent the use of Bell sampling in solving two important problems: learning stabiliser states and providing pseudorandomness lower bounds on qudits. More specifically, as our first result, we characterise the output distribution corresponding to Bell sampling on copies of a stabiliser state and show that the output can be uniformly random, and hence reveal no information. As our second result, for $d=p$ prime we devise a quantum algorithm to identify an unknown stabiliser state in $(\mathbb{C}^p)^{\otimes n}$ that uses $O(n)$ copies of the input state and runs in time $O(n^4)$. As our third result, we provide a quantum algorithm that efficiently distinguishes a Haar-random state from a state with non-negligible stabiliser fidelity. As a corollary, any Clifford circuit on qudits of dimension $d$ using $O(\log{n}/\log{d})$ auxiliary non-Clifford single-qudit gates cannot prepare computationally pseudorandom quantum states.

Deep learning has been able to outperform humans in terms of classification accuracy in many tasks. However, to achieve robustness to adversarial perturbations, the best methodologies require to perform adversarial training on a much larger training set that has been typically augmented using generative models (e.g., diffusion models). Our main objective in this work, is to reduce these data requirements while achieving the same or better accuracy-robustness trade-offs. We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin). We find that the existing approaches that prune samples with low margin fails to increase robustness when we add a lot of synthetic data, and explain this situation with a perceptron learning task. Moreover, we find that pruning high margin samples for better accuracy increases the harmful impact of mislabeled perturbed data in adversarial training, hurting both robustness and accuracy. We thus propose PUMA, a new data pruning strategy that computes the margin using DeepFool, and prunes the training samples of highest margin without hurting performance by jointly adjusting the training attack norm on the samples of lowest margin. We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies. Not only PUMA achieves similar robustness with less data, but it also significantly increases the model accuracy, improving the performance trade-off.

The Laplacian Growth (LG) model is known as a universality class of scale-free aggregation models in two dimensions, characterized by classical integrability and featuring finite-time boundary singularity formation. A discrete counterpart, Diffusion-Limited Aggregation (or DLA), has a similar local growth law, but significantly different global behavior. For both LG and DLA, a proper description for the scaling properties of long-time solutions is not available yet. In this note, we outline a possible approach towards finding the correct theory yielding a regularized LG and its relation to DLA.

Algorithms which learn environments represented by automata in the past have had complexity scaling with the number of states in the automaton, which can be exponentially large even for automata recognizing regular expressions with a small description length. We thus formalize a compositional language that can construct automata as transformations between certain types of category, representable as string diagrams, which better reflects the description complexity of various automata. We define complexity constraints on this framework by having them operate on categories enriched over filtered sets, and using these constraints, we prove elementary results on the runtime and expressivity of a subset of these transformations which operate deterministically on finite state spaces. These string diagrams, or "string machines," are themselves morphisms in a category, so it is possible for string machines to create other string machines in runtime to model computations which take more than constant memory. We prove sufficient conditions for polynomial runtime guarantees on these, which can help develop complexity constraints on string machines which also encapsulate runtime complexity.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司