亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem, e.g., low-rank approximation and regression. In the learning-based sketching paradigm proposed by~\cite{indyk2019learning}, the sketch matrix is found by choosing a random sparse matrix, e.g., CountSketch, and then the values of its non-zero entries are updated by running gradient descent on a training data set. Despite the growing body of work on this paradigm, a noticeable omission is that the locations of the non-zero entries of previous algorithms were fixed, and only their values were learned. In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries. Our first proposed algorithm is based on a greedy algorithm. However, one drawback of the greedy algorithm is its slower training time. We fix this issue and propose approaches for learning a sketching matrix for both low-rank approximation and Hessian approximation for second order optimization. The latter is helpful for a range of constrained optimization problems, such as LASSO and matrix estimation with a nuclear norm constraint. Both approaches achieve good accuracy with a fast running time. Moreover, our experiments suggest that our algorithm can still reduce the error significantly even if we only have a very limited number of training matrices.

相關內容

Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.

Efficient differential equation solvers have significantly reduced the sampling time of diffusion models (DMs) while retaining high sampling quality. Among these solvers, exponential integrators (EI) have gained prominence by demonstrating state-of-the-art performance. However, existing high-order EI-based sampling algorithms rely on degenerate EI solvers, resulting in inferior error bounds and reduced accuracy in contrast to the theoretically anticipated results under optimal settings. This situation makes the sampling quality extremely vulnerable to seemingly innocuous design choices such as timestep schedules. For example, an inefficient timestep scheduler might necessitate twice the number of steps to achieve a quality comparable to that obtained through carefully optimized timesteps. To address this issue, we reevaluate the design of high-order differential solvers for DMs. Through a thorough order analysis, we reveal that the degeneration of existing high-order EI solvers can be attributed to the absence of essential order conditions. By reformulating the differential equations in DMs and capitalizing on the theory of exponential integrators, we propose refined EI solvers that fulfill all the order conditions, which we designate as Refined Exponential Solver (RES). Utilizing these improved solvers, RES exhibits more favorable error bounds theoretically and achieves superior sampling efficiency and stability in practical applications. For instance, a simple switch from the single-step DPM-Solver++ to our order-satisfied RES solver when Number of Function Evaluations (NFE) $=9$, results in a reduction of numerical defects by $25.2\%$ and FID improvement of $25.4\%$ (16.77 vs 12.51) on a pre-trained ImageNet diffusion model.

The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem by encoding in a directed graph how the loss vector can be observed in each round of the game. The mini-max regret is closely related to the structure of the feedback graph and their connection is far from being fully understood. We propose a new algorithmic framework for the problem based on a partition of the feedback graph. Our analysis reveals the interplay between various parts of the graph by decomposing the regret to the sum of the regret caused by small parts and the regret caused by their interaction. As a result, our algorithm can be viewed as an interpolation and generalization of the optimal algorithms for MAB and learning with expert advice. Our framework unifies previous algorithms for both strongly observable graphs and weakly observable graphs, resulting in improved and optimal regret bounds on a wide range of graph families including graphs of bounded degree and strongly observable graphs with a few corrupted arms.

An introductory exposition of the virtual element method (VEM) is provided. The intent is to make this method more accessible to those unfamiliar with VEM. Familiarity with the finite element method for solving 2D linear elasticity problems is assumed. Derivations relevant to successful implementation are covered. Some theory is covered, but the focus here is on implementation and results. Examples are given that illustrate the utility of the method. Numerical results are provided to help researchers implement and verify their own results.

We consider structural equation models (SEMs), in which every variable is a function of a subset of the other variables and a stochastic error. Each such SEM is naturally associated with a directed graph describing the relationships between variables. When the errors are homoscedastic, recent work has proposed methods for inferring the graph from observational data under the assumption that the graph is acyclic (i.e., the SEM is recursive). In this work, we study the setting of homoscedastic errors but allow the graph to be cyclic (i.e., the SEM to be non-recursive). Using an algebraic approach that compares matroids derived from the parameterizations of the models, we derive sufficient conditions for when two simple directed graphs generate different distributions generically. Based on these conditions, we exhibit subclasses of graphs that allow for directed cycles, yet are generically identifiable. We also conjecture a strengthening of our graphical criterion which can be used to distinguish many more non-complete graphs.

Given a graph $G$, the number of its vertices is represented by $n(G)$, while the number of its edges is denoted as $m(G)$. An independent set in a graph is a set of vertices where no two vertices are adjacent to each other and the size of the maximum independent set is denoted by $\alpha(G)$. A matching in a graph refers to a set of edges where no two edges share a common vertex and the maximum matching size is denoted by $\mu(G)$. If $\alpha(G) + \mu(G) = n(G)$, then the graph $G$ is called a K\"{o}nig-Egerv\'{a}ry graph. Considering a graph $G$ with a degree sequence $d_1 \leq d_2 \leq \cdots \leq d_n$, the annihilation number $a(G)$ is defined as the largest integer $k$ such that the sum of the first $k$ degrees in the sequence is less than or equal to $m(G)$ (Pepper, 2004). It is a known fact that $\alpha(G)$ is less than or equal to $a(G)$ for any graph $G$. Our goal is to estimate the difference between these two parameters. Specifically, we prove a series of inequalities, including $a(G) - \alpha(G) \leq \frac{\mu(G) - 1}{2}$ for trees, $a(G) - \alpha(G) \leq 2 + \mu(G) - 2\sqrt{1 + \mu(G)}$ for bipartite graphs and $a(G) - \alpha(G) \leq \mu(G) - 2$ for K\"{o}nig-Egerv\'{a}ry graphs. Furthermore, we demonstrate that these inequalities serve as tight upper bounds for the difference between the annihilation and independence numbers, regardless of the assigned value for $\mu(G)$.

We present a linear-time algorithm that, given as input (i) a bipartite Pfaffian graph $G$ of minimum degree three, (ii) a Hamiltonian cycle $H$ in $G$, and (iii) an edge $e$ in $H$, outputs at least three other Hamiltonian cycles through the edge $e$ in $G$. This linear-time complexity of finding another Hamiltonian cycle given one is in sharp contrast to the problem of deciding the existence of a Hamiltonian cycle, which is NP-complete already for cubic bipartite planar graphs; such graphs are Pfaffian. Also, without the degree requirement, we show that it is NP-hard to find another Hamiltonian cycle in a bipartite Pfaffian graph. We present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not known to hold in general planar graphs. We prove our results by a new structural technique that efficiently witnesses each Hamiltonian cycle $H$ through an arbitrary fixed anchor edge $e$ in a bipartite Pfaffian graph using a two-coloring of the vertices as advice that is unique to $H$. Previous techniques -- the Cut&Count technique of Cygan et al. [FOCS'11, TALG'22] in particular -- were able to reduce the Hamiltonian cycle problem only to essentially counting problems; our results show that counting can be avoided by leveraging properties of bipartite Pfaffian graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.

Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have been developed almost exclusively in the context of Lawvere metric spaces. We construct a meaningful notion of magnitude for flow graphs based on the observation that topological entropy provides a suitable map into the max-plus semiring, and we outline its utility. Subsequently, we identify a separate point of contact between magnitude and topological entropy in digraphs that yields an analogue of volume entropy for geodesic flows. Finally, we sketch the utility of this construction for feature engineering in downstream applications with generic digraphs.

We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司