亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum low-density parity-check (QLDPC) codes are among the most promising candidates for future quantum error correction schemes. However, a limited number of short to moderate-length QLDPC codes have been designed and their decoding performance is sub-optimal with a quaternary belief propagation (BP) decoder due to unavoidable short cycles in their Tanner graphs. In this paper, we propose a novel joint code and decoder design for QLDPC codes. The constructed codes have a minimum distance of about the square root of the block length. In addition, it is, to the best of our knowledge, the first QLDPC code family where BP decoding is not impaired by short cycles of length 4. This is achieved by using an ensemble BP decoder mitigating the influence of assembled short cycles. We outline two code construction methods based on classical quasi-cyclic codes and finite geometry codes. Numerical results demonstrate outstanding decoding performance over depolarizing channels.

相關內容

The human cognitive system exhibits remarkable flexibility and generalization capabilities, partly due to its ability to form low-dimensional, compositional representations of the environment. In contrast, standard neural network architectures often struggle with abstract reasoning tasks, overfitting, and requiring extensive data for training. This paper investigates the impact of the relational bottleneck -- a mechanism that focuses processing on relations among inputs -- on the learning of factorized representations conducive to compositional coding and the attendant flexibility of processing. We demonstrate that such a bottleneck not only improves generalization and learning efficiency, but also aligns network performance with human-like behavioral biases. Networks trained with the relational bottleneck developed orthogonal representations of feature dimensions latent in the dataset, reflecting the factorized structure thought to underlie human cognitive flexibility. Moreover, the relational network mimics human biases towards regularity without pre-specified symbolic primitives, suggesting that the bottleneck fosters the emergence of abstract representations that confer flexibility akin to symbols.

Prediction methods for time-to-event outcomes often utilize survival models that rely on strong assumptions about noninformative censoring or on how individual-level covariates and survival functions are related. When the main interest is in predicting individual-level restricted mean survival times (RMST), reliance on such assumptions can lead to poor predictive performance if these assumptions are not satisfied. We propose a generalized Bayes framework that avoids full probability modeling of all survival outcomes by using an RMST-targeted loss function that depends on a collection of inverse probability of censoring weights (IPCW). In our generalized Bayes formulation, we utilize a flexible additive tree regression model for the RMST function, and the posterior distribution of interest is obtained through model-averaging IPCW-conditional loss function-based pseudo-Bayesian posteriors. Because informative censoring can be captured by the IPCW-dependent loss function, our approach only requires one to specify a model for the censoring distribution, thereby obviating the need for complex joint modeling to handle informative censoring. We evaluate the performance of our method through a series of simulations that compare it with several well-known survival machine learning methods, and we illustrate the application of our method using a multi-site cohort of breast cancer patients with clinical and genomic covariates.

Elliptic reconstruction property, originally introduced by Makridakis and Nochetto for linear parabolic problems, is a well-known tool to derive optimal a posteriori error estimates. No such results are known for nonlinear and nonsmooth problems such as parabolic variational inequalities (VIs). This article establishes the elliptic reconstruction property for parabolic VIs and derives a posteriori error estimates in $L^{\infty}(0,T;L^{2}(\Omega))$ and $L^{\infty}(0,T;L^{\infty}(\Omega))$, respectively. As an application, the residual-type error estimates are presented.

Uncertainty quantification (UQ) to detect samples with large expected errors (outliers) is applied to reactive molecular potential energy surfaces (PESs). Three methods - Ensembles, Deep Evidential Regression (DER), and Gaussian Mixture Models (GMM) - were applied to the H-transfer reaction between ${\it syn-}$Criegee and vinyl hydroxyperoxide. The results indicate that ensemble models provide the best results for detecting outliers, followed by GMM. For example, from a pool of 1000 structures with the largest uncertainty, the detection quality for outliers is $\sim 90$ \% and $\sim 50$ \%, respectively, if 25 or 1000 structures with large errors are sought. On the contrary, the limitations of the statistical assumptions of DER greatly impacted its prediction capabilities. Finally, a structure-based indicator was found to be correlated with large average error, which may help to rapidly classify new structures into those that provide an advantage for refining the neural network.

As learned image codecs (LICs) become more prevalent, their low coding efficiency for out-of-distribution data becomes a bottleneck for some applications. To improve the performance of LICs for screen content (SC) images without breaking backwards compatibility, we propose to introduce parameterized and invertible linear transformations into the coding pipeline without changing the underlying baseline codec's operation flow. We design two neural networks to act as prefilters and postfilters in our setup to increase the coding efficiency and help with the recovery from coding artifacts. Our end-to-end trained solution achieves up to 10% bitrate savings on SC compression compared to the baseline LICs while introducing only 1% extra parameters.

The success of large language models has inspired researchers to transfer their exceptional representing ability to other modalities. Several recent works leverage image-caption alignment datasets to train multimodal large language models (MLLMs), which achieve state-of-the-art performance on image-to-text tasks. However, there are very few studies exploring whether MLLMs truly understand the complete image information, i.e., global information, or if they can only capture some local object information. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models for local semantic representation through object detection tasks. And we draw a conclusion that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information.

Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. One of the strongest and most well-studied adversarial tampering models is $2$-split-state tampering. Here, a codeword is split into two parts and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of \emph{classical} messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain (IEEE Trans.\ Inf.\ Theory 2024), adversaries with quantum capabilities and \emph{shared entanglement} had not been considered, and it is a priori not clear whether previous schemes remain secure in this model. In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. Then, we present explicit constructions of such schemes that achieve low-error non-malleability. More precisely, we construct efficiently encodable and decodable split-state non-malleable codes and secret sharing schemes for quantum messages preserving entanglement with external systems and achieving security against quantum adversaries having shared entanglement with codeword length $n$, any message length at most $n^{\Omega(1)}$, and error $\epsilon=2^{-{n^{\Omega(1)}}}$. In the easier setting of \emph{average-case} non-malleability, we achieve efficient non-malleable coding with rate close to $1/11$.

Sharding is essential for improving blockchain scalability. Existing protocols overlook diverse adversarial attacks, limiting transaction throughput. This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue, boosting blockchain scalability. Reticulum employs a two-phase approach, adapting transaction throughput based on runtime adversarial attacks. It comprises "control" and "process" shards in two layers. Process shards contain at least one trustworthy node, while control shards have a majority of trusted nodes. In the first phase, transactions are written to blocks and voted on by nodes in process shards. Unanimously accepted blocks are confirmed. In the second phase, blocks without unanimous acceptance are voted on by control shards. Blocks are accepted if the majority votes in favor, eliminating first-phase opponents and silent voters. Reticulum uses unanimous voting in the first phase, involving fewer nodes, enabling more parallel process shards. Control shards finalize decisions and resolve disputes. Experiments confirm Reticulum's innovative design, providing high transaction throughput and robustness against various network attacks, outperforming existing sharding protocols for blockchain networks.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司