亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Customer satisfaction is crucially affected by energy consumption in mobile devices. One of the most energy-consuming parts of an application is images. While different images with different quality consume different amounts of energy, there are no straightforward methods to calculate the energy consumption of an operation in a typical image. This paper, first, investigates that there is a correlation between energy consumption and image quality as well as image file size. Therefore, these two can be considered as a proxy for energy consumption. Then, we propose a multi-objective strategy to enhance image quality and reduce image file size based on the quantisation tables in JPEG image compression. To this end, we have used two general multi-objective metaheuristic approaches: scalarisation and Pareto-based. Scalarisation methods find a single optimal solution based on combining different objectives, while Pareto-based techniques aim to achieve a set of solutions. In this paper, we embed our strategy into five scalarisation algorithms, including energy-aware multi-objective genetic algorithm (EnMOGA), energy-aware multi-objective particle swarm optimisation (EnMOPSO), energy-aware multi-objective differential evolution (EnMODE), energy-aware multi-objective evolutionary strategy (EnMOES), and energy-aware multi-objective pattern search (EnMOPS). Also, two Pareto-based methods, including a non-dominated sorting genetic algorithm (NSGA-II) and a reference-point-based NSGA-II (NSGA-III) are used for the embedding scheme, and two Pareto-based algorithms, EnNSGAII and EnNSGAIII, are presented. Experimental studies show that the performance of the baseline algorithm is improved by embedding the proposed strategy into metaheuristic algorithms.

相關內容

In solving multi-modal, multi-objective optimization problems (MMOPs), the objective is not only to find a good representation of the Pareto-optimal front (PF) in the objective space but also to find all equivalent Pareto-optimal subsets (PSS) in the variable space. Such problems are practically relevant when a decision maker (DM) is interested in identifying alternative designs with similar performance. There has been significant research interest in recent years to develop efficient algorithms to deal with MMOPs. However, the existing algorithms still require prohibitive number of function evaluations (often in several thousands) to deal with problems involving as low as two objectives and two variables. The algorithms are typically embedded with sophisticated, customized mechanisms that require additional parameters to manage the diversity and convergence in the variable and the objective spaces. In this letter, we introduce a steady-state evolutionary algorithm for solving MMOPs, with a simple design and no additional userdefined parameters that need tuning compared to a standard EA. We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations. The performance of the proposed algorithm is compared with six state-of-the-art algorithms (MO Ring PSO SCD, DN-NSGAII, TriMOEA-TA&R, CPDEA, MMOEA/DC and MMEA-WI). The proposed algorithm exhibits significantly better performance than the above algorithms based on the established metrics including IGDX, PSP and IGD. We hope this study would encourage design of simple, efficient and generalized algorithms to improve its uptake for practical applications.

A network (CC-Net) based on complementary consistency training is proposed for semi-supervised left atrial image segmentation in this paper. From the perspective of complementary information, CC-Net efficiently utilizes unlabeled data and resolves the problem that semi-supervised segmentation algorithms currently in use have limited capacity to extract information from unlabeled data. A primary model and two complementary auxiliary models are part of the complementary symmetric structure of the CC-Net. The inter-model perturbation is formed between the main model and the auxiliary model to form complementary consistency training. The complementary information between the two auxiliary models helps the main model to focus on the fuzzy region effectively. Additionally, forcing consistency between the main model and the auxiliary models makes it easier to obtain decision boundaries with low uncertainty. CC-Net was validated in the benchmark dataset of the 2018 Atrial Segmentation Challenge. The Dice reached of 89.82% with 10% labeled data training and 91.27% with 20% labeled data training. By comparing with current state-of-the-art algorithms, CC-Net has the best segmentation performance and robustness. Our code is publicly available at //github.com/Cuthbert-Huang/CC-Net.

Cervical cancer is a public health problem, where the treatment has a better chance of success if detected early. The analysis is a manual process which is subject to a human error, so this paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches. Also, this paper compares models for instance and semantic detection approaches. Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results, and the best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively. For instance segmentation, the Mask R-CNN using ResNet-50 performs better in the visual inspection and has a 0.61 of the IoU metric. We conclude that the instance segmentation and semantic segmentation models can be used in combination to make a cascade model able to select a nucleus and subsequently segment the nucleus and its respective nucleolar organizer regions (NORs).

Knowledge distillation-based anomaly detection methods generate same outputs for unknown classes due to the symmetric form of the input and ignore the powerful semantic information of the output of the teacher network since it is only used as a "reference standard". Towards this end, this work proposes a novel Asymmetric Distillation Post-Segmentation (ADPS) method to effectively explore the asymmetric structure of the input and the discriminative features of the teacher network. Specifically, a simple yet effective asymmetric input approach is proposed to make different data flows through the teacher and student networks. The student network enables to have different inductive and expressive abilities, which can generate different outputs in anomalous regions. Besides, to further explore the semantic information of the teacher network and obtain effective discriminative boundaries, the Weight Mask Block (WMB) and the post-segmentation module are proposede. WMB leverages a weighted strategy by exploring teacher-student feature maps to highlight anomalous features. The post-segmentation module further learns the anomalous features and obtains valid discriminative boundaries. Experimental results on three benchmark datasets demonstrate that the proposed ADPS achieves state-of-the-art anomaly segmentation results.

Analog neural networks are highly effective to solve some optimization problems, and they have been used for target localization in distributed multiple-input multiple-output (MIMO) radar. In this work, we design a new relaxed energy function based neural network (RNFNN) for target localization in distributed MIMO radar. We start with the maximum likelihood (ML) target localization with a complicated objective function, which can be transformed to a tractable one with equality constraints by introducing some auxiliary variables. Different from the existing Lagrangian programming neural network (LPNN) methods, we further relax the optimization problem formulated for target localization, so that the Lagrangian multiplier terms are no longer needed, leading to a relaxed energy function with better convexity. Based on the relaxed energy function, a RNFNN is implemented with much simpler structure and faster convergence speed. Furthermore, the RNFNN method is extended to localization in the presence of transmitter and receiver location errors. It is shown that the performance of the proposed localization approach achieves the Cram\'er-Rao lower bound (CRLB) within a wider range of signal-to-noise ratios (SNRs). Extensive comparisons with the state-of-the-art approaches are provided, which demonstrate the advantages of the proposed approach in terms of performance improvement and computational complexity (or convergence speed).

Graphs drawn in the plane are ubiquitous, arising from data sets through a variety of methods ranging from GIS analysis to image classification to shape analysis. A fundamental problem in this type of data is comparison: given a set of such graphs, can we rank how similar they are, in such a way that we capture their geometric "shape" in the plane? In this paper we explore a method to compare two such embedded graphs, via a simplified combinatorial representation called a tail-less merge tree which encodes the structure based on a fixed direction. First, we examine the properties of a distance designed to compare merge trees called the branching distance, and show that the distance as defined in previous work fails to satisfy some of the requirements of a metric. We incorporate this into a new distance function called average branching distance to compare graphs by looking at the branching distance for merge trees defined over many directions. Despite the theoretical issues, we show that the definition is still quite useful in practice by using our open-source code to cluster data sets of embedded graphs.

Imitation learning (IL) can generate computationally efficient sensorimotor policies from demonstrations provided by computationally expensive model-based sensing and control algorithms. However, commonly employed IL methods are often data-inefficient, requiring the collection of a large number of demonstrations and producing policies with limited robustness to uncertainties. In this work, we combine IL with an output feedback robust tube model predictive controller (RTMPC) to co-generate demonstrations and a data augmentation strategy to efficiently learn neural network-based sensorimotor policies. Thanks to the augmented data, we reduce the computation time and the number of demonstrations needed by IL, while providing robustness to sensing and process uncertainty. We tailor our approach to the task of learning a trajectory tracking visuomotor policy for an aerial robot, leveraging a 3D mesh of the environment as part of the data augmentation process. We numerically demonstrate that our method can learn a robust visuomotor policy from a single demonstration--a two-orders of magnitude improvement in demonstration efficiency compared to existing IL methods.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司